BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 31200026)

  • 1. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
    Hoseini F; Shahbahrami A; Bayat P
    J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review.
    Bernal J; Kushibar K; Asfaw DS; Valverde S; Oliver A; Martí R; Lladó X
    Artif Intell Med; 2019 Apr; 95():64-81. PubMed ID: 30195984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on brain tumor segmentation of MRI images.
    Wadhwa A; Bhardwaj A; Singh Verma V
    Magn Reson Imaging; 2019 Sep; 61():247-259. PubMed ID: 31200024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks.
    Pereira S; Pinto A; Amorim J; Ribeiro A; Alves V; Silva CA
    IEEE Trans Med Imaging; 2019 Dec; 38(12):2914-2925. PubMed ID: 31135354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updates on Deep Learning and Glioma: Use of Convolutional Neural Networks to Image Glioma Heterogeneity.
    Chow DS; Khatri D; Chang PD; Zlochower A; Boockvar JA; Filippi CG
    Neuroimaging Clin N Am; 2020 Nov; 30(4):493-503. PubMed ID: 33038999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medical Image Analysis using Convolutional Neural Networks: A Review.
    Anwar SM; Majid M; Qayyum A; Awais M; Alnowami M; Khan MK
    J Med Syst; 2018 Oct; 42(11):226. PubMed ID: 30298337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing magnetic resonance imaging data from glioma patients using deep learning.
    Menze B; Isensee F; Wiest R; Wiestler B; Maier-Hein K; Reyes M; Bakas S
    Comput Med Imaging Graph; 2021 Mar; 88():101828. PubMed ID: 33571780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network.
    Sert E; Özyurt F; Doğantekin A
    Med Hypotheses; 2019 Dec; 133():109413. PubMed ID: 31586812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning framework for unsupervised affine and deformable image registration.
    de Vos BD; Berendsen FF; Viergever MA; Sokooti H; Staring M; Išgum I
    Med Image Anal; 2019 Feb; 52():128-143. PubMed ID: 30579222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images.
    Pei L; Vidyaratne L; Rahman MM; Iftekharuddin KM
    Sci Rep; 2020 Nov; 10(1):19726. PubMed ID: 33184301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDReg-Net: Multi-resolution diffeomorphic image registration using fully convolutional networks with deep self-supervision.
    Li H; Fan Y;
    Hum Brain Mapp; 2022 May; 43(7):2218-2231. PubMed ID: 35072327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks.
    Piantadosi G; Sansone M; Fusco R; Sansone C
    Artif Intell Med; 2020 Mar; 103():101781. PubMed ID: 32143788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling machine learning in X-ray-based procedures via realistic simulation of image formation.
    Unberath M; Zaech JN; Gao C; Bier B; Goldmann F; Lee SC; Fotouhi J; Taylor R; Armand M; Navab N
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1517-1528. PubMed ID: 31187399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical image analysis using deep learning algorithms.
    Li M; Jiang Y; Zhang Y; Zhu H
    Front Public Health; 2023; 11():1273253. PubMed ID: 38026291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.