These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 31200084)
21. Transcriptome profiles reveal response mechanisms and key role of PsNAC1 in Pinus sylvestris var. mongolica to drought stress. Zhou C; Bo W; El-Kassaby YA; Li W BMC Plant Biol; 2024 Apr; 24(1):343. PubMed ID: 38671396 [TBL] [Abstract][Full Text] [Related]
22. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress. Zhou A; Ma H; Liu E; Jiang T; Feng S; Gong S; Wang J Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420173 [No Abstract] [Full Text] [Related]
24. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. Li MQ; Yang J; Wang X; Li DX; Zhang CB; Tian ZH; You MH; Bai SQ; Lin HH J Plant Physiol; 2020 Jul; 250():153183. PubMed ID: 32422512 [TBL] [Abstract][Full Text] [Related]
25. Iris lactea var. chinensis plant drought tolerance depends on the response of proline metabolism, transcription factors, transporters and the ROS-scavenging system. Zhang Y; Zhang R; Song Z; Fu W; Yun L; Gao J; Hu G; Wang Z; Wu H; Zhang G; Wu J BMC Plant Biol; 2023 Jan; 23(1):17. PubMed ID: 36617566 [TBL] [Abstract][Full Text] [Related]
26. Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet. Cao X; Hu Y; Song J; Feng H; Wang J; Chen L; Wang L; Diao X; Wan Y; Liu S; Qiao Z Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142707 [TBL] [Abstract][Full Text] [Related]
27. De novo transcriptomic analysis of Doum Palm (Hyphaene compressa) revealed an insight into its potential drought tolerance. Borlay AJ; Mweu CM; Nyanjom SG; Omolo KM; Naitchede LHS PLoS One; 2024; 19(3):e0292543. PubMed ID: 38470884 [TBL] [Abstract][Full Text] [Related]
28. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Gong XX; Yan BY; Hu J; Yang CP; Li YJ; Liu JP; Liao WB Genes Genomics; 2018 Nov; 40(11):1181-1197. PubMed ID: 30315521 [TBL] [Abstract][Full Text] [Related]
30. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. Bhardwaj AR; Joshi G; Kukreja B; Malik V; Arora P; Pandey R; Shukla RN; Bankar KG; Katiyar-Agarwal S; Goel S; Jagannath A; Kumar A; Agarwal M BMC Plant Biol; 2015 Jan; 15():9. PubMed ID: 25604693 [TBL] [Abstract][Full Text] [Related]
31. Gene expression profiling of Bothriochloa ischaemum leaves and roots under drought stress. Li C; Dong J; Zhang X; Zhong H; Jia H; Fang Z; Dong K Gene; 2019 Apr; 691():77-86. PubMed ID: 30593916 [TBL] [Abstract][Full Text] [Related]
32. De Novo Assembly and Discovery of Genes That Involved in Drought Tolerance in the Common Vetch. Zhu Y; Liu Q; Xu W; Zhang J; Wang X; Nie G; Yao L; Wang H; Lin C Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650531 [TBL] [Abstract][Full Text] [Related]
33. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. Min X; Lin X; Ndayambaza B; Wang Y; Liu W BMC Plant Biol; 2020 Apr; 20(1):165. PubMed ID: 32293274 [TBL] [Abstract][Full Text] [Related]
34. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. Liu T; Liu Y; Fu G; Chen J; Lv T; Su D; Wang Y; Hu X; Su X; Harris AJ J Plant Physiol; 2022 Apr; 271():153630. PubMed ID: 35193087 [TBL] [Abstract][Full Text] [Related]
35. Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines. Wu Y; Wang Y; Shi H; Hu H; Yi L; Hou J PLoS One; 2022; 17(4):e0265447. PubMed ID: 35363798 [TBL] [Abstract][Full Text] [Related]
36. Transcriptomic and Metabolomic Insights into ABA-Related Genes in Liu Y; Zhao C; Tang X; Wang L; Guo R Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39062878 [No Abstract] [Full Text] [Related]
37. Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using illumina paired-end sequencing technology. An X; Chen J; Zhang J; Liao Y; Dai L; Wang B; Liu L; Peng D Int J Mol Sci; 2015 Feb; 16(2):3493-511. PubMed ID: 25658800 [TBL] [Abstract][Full Text] [Related]
38. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack. Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim. Tao L; Zhao Y; Wu Y; Wang Q; Yuan H; Zhao L; Guo W; You X Gene; 2016 Mar; 578(1):17-24. PubMed ID: 26657036 [TBL] [Abstract][Full Text] [Related]
40. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. Wu Y; Wei W; Pang X; Wang X; Zhang H; Dong B; Xing Y; Li X; Wang M BMC Genomics; 2014 Aug; 15(1):671. PubMed ID: 25108399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]