These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31200112)

  • 21. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.
    Mazel-Sanchez B; Boal-Carvalho I; Silva F; Dijkman R; Schmolke M
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29563290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice.
    Yu Z; Sun W; Zhang X; Cheng K; Zhao C; Xia X; Gao Y
    Vet Microbiol; 2017 Aug; 207():97-102. PubMed ID: 28757046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PAN substitutions A37S, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza A virus by impairing the polymerase and endonuclease activities.
    Hu M; Yuan S; Ye ZW; Singh K; Li C; Shuai H; Fai N; Chow BKC; Chu H; Zheng BJ
    J Gen Virol; 2017 Mar; 98(3):364-373. PubMed ID: 28113045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The substitution V379I in PA protein attenuates the pathogenicity of influenza A (H1N1) pdm09 viruses in mice.
    Chen Y; Zhu W; Bai T; Zou X; Zhang S; Sun Y; Li X; Xiang X; Zhao Q; Huang C; Chen T; Wang D; Shu Y
    Sci China Life Sci; 2017 Sep; 60(9):1044-1046. PubMed ID: 28293812
    [No Abstract]   [Full Text] [Related]  

  • 25. Amino acid substitutions occurring during adaptation of an emergent H5N6 avian influenza virus to mammals.
    Peng X; Wu H; Peng X; Wu X; Cheng L; Liu F; Ji S; Wu N
    Arch Virol; 2016 Jun; 161(6):1665-70. PubMed ID: 26997612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexibility
    Obadan AO; Santos J; Ferreri L; Thompson AJ; Carnaccini S; Geiger G; Gonzalez Reiche AS; Rajão DS; Paulson JC; Perez DR
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30567980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice.
    Chen Q; Yu Z; Sun W; Li X; Chai H; Gao X; Guo J; Zhang K; Feng N; Zheng X; Wang H; Zhao Y; Qin C; Huang G; Yang S; Qian J; Gao Y; Xia X; Wang T; Hua Y
    Vet Microbiol; 2015 May; 177(1-2):18-24. PubMed ID: 25769645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts.
    Sun Y; Hu Z; Zhang X; Chen M; Wang Z; Xu G; Bi Y; Tong Q; Wang M; Sun H; Pu J; Iqbal M; Liu J
    J Virol; 2020 May; 94(11):. PubMed ID: 32161172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2.
    Li J; Ishaq M; Prudence M; Xi X; Hu T; Liu Q; Guo D
    Virus Res; 2009 Sep; 144(1-2):123-9. PubMed ID: 19393699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice.
    Forero A; Tisoncik-Go J; Watanabe T; Zhong G; Hatta M; Tchitchek N; Selinger C; Chang J; Barker K; Morrison J; Berndt JD; Moon RT; Josset L; Kawaoka Y; Katze MG
    J Virol; 2015 Dec; 90(5):2240-53. PubMed ID: 26656717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The genesis of a pandemic influenza virus.
    Russell CJ; Webster RG
    Cell; 2005 Nov; 123(3):368-71. PubMed ID: 16269328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.
    Qi L; Pujanauski LM; Davis AS; Schwartzman LM; Chertow DS; Baxter D; Scherler K; Hartshorn KL; Slemons RD; Walters KA; Kash JC; Taubenberger JK
    mBio; 2014 Nov; 5(6):e02116. PubMed ID: 25406382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for avian and human host cell factors that affect the activity of influenza virus polymerase.
    Moncorgé O; Mura M; Barclay WS
    J Virol; 2010 Oct; 84(19):9978-86. PubMed ID: 20631125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan.
    Shi W; Shi Y; Wu Y; Liu D; Gao GF
    Protein Cell; 2013 Nov; 4(11):846-53. PubMed ID: 24136722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Adaptive evolution of the hemagglutinin genes of the H6N1 avian influenza virus in Taiwan, China].
    Yang JK; Zhu XL; Wang P; Gao JG
    Bing Du Xue Bao; 2014 Sep; 30(5):529-34. PubMed ID: 25562962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus.
    Behera P; Nagarajan S; Murugkar HV; Kalaiyarasu S; Prakash A; Gothalwal R; Dubey SC; Kulkarni DD; Tosh C
    J Biosci; 2015 Jun; 40(2):233-40. PubMed ID: 25963253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid substitutions involved in the adaptation of a novel H7N7 avian influenza virus in mice.
    Wu H; Liu F; Yang F; Xiao Y; Yao H; Wu N
    Res Vet Sci; 2020 Jun; 130():203-206. PubMed ID: 32200160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice.
    Sang X; Wang A; Chai T; He X; Ding J; Gao X; Li Y; Zhang K; Ren Z; Li L; Yu Z; Wang T; Feng N; Zheng X; Wang H; Zhao Y; Yang S; Gao Y; Xia X
    Arch Virol; 2015 May; 160(5):1267-77. PubMed ID: 25782865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of H3 subtype avian influenza viruses based on poultry-related environmental surveillance in China between 2014 and 2017.
    Zou S; Tang J; Zhang Y; Liu L; Li X; Meng Y; Zhao X; Yang L; Shu Y; Wang D
    Virology; 2020 Mar; 542():8-19. PubMed ID: 31957664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two mutations in viral protein enhance the adaptation of waterfowl-origin H3N2 virus in murine model.
    Yu Z; Cheng K; Wang T; Ren Z; Wu J; He H; Gao Y
    Virus Res; 2019 Aug; 269():197639. PubMed ID: 31173771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.