These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31200174)

  • 21. Synthesis of iron oxyhydroxide-coated rice straw (IOC-RS) and its application in arsenic(V) removal from water.
    Ouédraogo IW; Pehlivan E; Tran HT; Bonzi-Coulibaly YL; Zachmann D; Bahadir M
    J Water Health; 2015 Sep; 13(3):726-36. PubMed ID: 26322758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.
    Paredes-Laverde M; Silva-Agredo J; Torres-Palma RA
    J Environ Manage; 2018 May; 213():98-108. PubMed ID: 29482094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface modified polythiophene nanocomposite using HPC and DBSNa for heavy metal ion removal.
    Arabahmadi V; Ghorbani M
    Water Sci Technol; 2017 Jun; 75(12):2765-2776. PubMed ID: 28659516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles.
    Vitela-Rodriguez AV; Rangel-Mendez JR
    J Environ Manage; 2013 Jan; 114():225-31. PubMed ID: 23146335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Arsenic(Ⅴ) Removal by Granular Adsorbents Made from Backwashing Residuals from Biofilters for Iron and Manganese Removal].
    Zeng HP; Lü SS; Yang H; Yin C; Cao RH; Wang YJ; Li D; Zhang J
    Huan Jing Ke Xue; 2018 Jan; 39(1):170-178. PubMed ID: 29965679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and adsorption of FeMnLa-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions.
    Lin L; Zhang G; Liu X; Khan ZH; Qiu W; Song Z
    Environ Pollut; 2019 Apr; 247():128-135. PubMed ID: 30669080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of diatom-FeOx composite for removing trace arsenic to meet drinking water standards.
    Thakkar M; Randhawa V; Mitra S; Wei L
    J Colloid Interface Sci; 2015 Nov; 457():169-73. PubMed ID: 26164249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites.
    Liou TH; Wang PY
    Waste Manag; 2020 May; 108():51-61. PubMed ID: 32344300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Modification of natural siderite and enhanced adsorption of arsenic].
    Zhao K; Guo HM; Li Y; Ren Y
    Huan Jing Ke Xue; 2012 Feb; 33(2):459-68. PubMed ID: 22509582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption.
    Garrido-Hoyos S; Romero-Velazquez L
    Int J Environ Res Public Health; 2015 Dec; 13(1):ijerph13010069. PubMed ID: 26703707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide-rice husk biochar composite.
    Xiang J; Lin Q; Cheng S; Guo J; Yao X; Liu Q; Yin G; Liu D
    Environ Sci Pollut Res Int; 2018 May; 25(14):14032-14042. PubMed ID: 29520542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and isotherms of Neutral Red adsorption on peanut husk.
    Han R; Han P; Cai Z; Zhao Z; Tang M
    J Environ Sci (China); 2008; 20(9):1035-41. PubMed ID: 19143308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe
    Sheeka Subramani B; Shrihari S; Manu B; Babunarayan KS
    J Environ Manage; 2019 Sep; 246():345-354. PubMed ID: 31185321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk.
    Ye H; Zhu Q; Du D
    Bioresour Technol; 2010 Jul; 101(14):5175-9. PubMed ID: 20202825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.
    Dickson D; Liu G; Cai Y
    J Environ Manage; 2017 Jan; 186(Pt 2):261-267. PubMed ID: 27480915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength.
    Babaeivelni K; Khodadoust AP; Bogdan D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1462-73. PubMed ID: 25137534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'.
    Ranjan D; Talat M; Hasan SH
    J Hazard Mater; 2009 Jul; 166(2-3):1050-9. PubMed ID: 19131161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions.
    Mohamed A; Osman TA; Toprak MS; Muhammed M; Uheida A
    Chemosphere; 2017 Aug; 180():108-116. PubMed ID: 28395148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies.
    Nayak AK; Pal A
    J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies.
    Pokhrel D; Viraraghavan T
    J Hazard Mater; 2008 Feb; 150(3):818-25. PubMed ID: 17582682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.