These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31200198)

  • 21. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation.
    Aparicio JD; Benimeli CS; Almeida CA; Polti MA; Colin VL
    Chemosphere; 2017 Aug; 181():478-484. PubMed ID: 28460294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems.
    Fuentes MS; Raimondo EE; Amoroso MJ; Benimeli CS
    Chemosphere; 2017 Apr; 173():359-367. PubMed ID: 28126570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromium(VI) reduction in Streptomyces sp. M7 mediated by a novel Old Yellow Enzyme.
    Sineli PE; Guerrero DS; Alvarez A; Dávila Costa JS
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):5015-5022. PubMed ID: 31044312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of organic wastes on a benzo(a)pyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida.
    Tejada M; Masciandaro G
    Ecotoxicol Environ Saf; 2011 May; 74(4):668-74. PubMed ID: 21112089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Ecotoxicological effect and soil environmental criteria of the heavy metal chromium(VI)].
    Wang XN; Liu ZT; Wang WH; Zhang C; Chen LH
    Huan Jing Ke Xue; 2014 Aug; 35(8):3155-61. PubMed ID: 25338393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioremediation of lindane contaminated soil: Exploring the potential of actinobacterial strains.
    Usmani Z; Kulp M; Lukk T
    Chemosphere; 2021 Sep; 278():130468. PubMed ID: 34126690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium.
    Francisco R; Branco R; Schwab S; Baldani JI; Morais PV
    World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.
    Hubálek T; Vosáhlová S; Matejů V; Kovácová N; Novotný C
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):1-7. PubMed ID: 17106791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicity of chromium(III) and chromium(VI) to the earthworm Eisenia fetida.
    Sivakumar S; Subbhuraam CV
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):93-8. PubMed ID: 15978294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium(VI) resistance and removal by actinomycete strains isolated from sediments.
    Polti MA; Amoroso MJ; Abate CM
    Chemosphere; 2007 Mar; 67(4):660-7. PubMed ID: 17182076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.
    Li SG; Hou J; Liu XH; Cui BS; Bai JH
    Environ Toxicol Chem; 2016 Jul; 35(7):1751-8. PubMed ID: 26627465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils.
    van Gestel CA; van der Waarde JJ; Derksen JG; van der Hoek EE; Veul MF; Bouwens S; Rusch B; Kronenburg R; Stokman GN
    Environ Toxicol Chem; 2001 Jul; 20(7):1438-49. PubMed ID: 11434283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of Cr(VI)-reducing actinomycetes from estuarine sediments.
    Terahara T; Xu X; Kobayashi T; Imada C
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3297-309. PubMed ID: 25672321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.
    Bori J; Vallès B; Ortega L; Riva MC
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18694-703. PubMed ID: 27312898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.
    Muñiz S; Gonzalvo P; Valdehita A; Molina-Molina JM; Navas JM; Olea N; Fernández-Cascán J; Navarro E
    Ecotoxicol Environ Saf; 2017 Nov; 145():539-548. PubMed ID: 28787615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhizospheric Microbacterium sp. P27 Showing Potential of Lindane Degradation and Plant Growth Promoting Traits.
    Singh T; Singh DK
    Curr Microbiol; 2019 Jul; 76(7):888-895. PubMed ID: 31093691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.
    Shen W; Zhu N; Cui J; Wang H; Dang Z; Wu P; Luo Y; Shi C
    Ecotoxicol Environ Saf; 2016 Feb; 124():120-128. PubMed ID: 26491984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.
    Bigorgne E; Cossu-Leguille C; Bonnard M; Nahmani J
    Chemosphere; 2010 Aug; 80(9):1109-12. PubMed ID: 20561668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soil invertebrate avoidance behavior identifies petroleum hydrocarbon contaminated soils toxic to sensitive plant species.
    Gainer A; Hogan N; Siciliano SD
    J Hazard Mater; 2019 Jan; 361():338-347. PubMed ID: 30261458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.