BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31200219)

  • 1. Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone.
    Weatherill JJ; Krause S; Ullah S; Cassidy NJ; Levy A; Drijfhout FP; Rivett MO
    Water Res; 2019 Sep; 161():222-231. PubMed ID: 31200219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.
    Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH
    Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR.
    Hunkeler D; Abe Y; Broholm MM; Jeannottat S; Westergaard C; Jacobsen CS; Aravena R; Bjerg PL
    J Contam Hydrol; 2011 Jan; 119(1-4):69-79. PubMed ID: 21030108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential.
    Weatherill JJ; Atashgahi S; Schneidewind U; Krause S; Ullah S; Cassidy N; Rivett MO
    Water Res; 2018 Jan; 128():362-382. PubMed ID: 29126033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater.
    Bennett P; Gandhi D; Warner S; Bussey J
    J Hazard Mater; 2007 Nov; 149(3):568-73. PubMed ID: 17689011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-Coupled Degradation of Chlorinated Ethenes in Sandstone: An Intact Core Microcosm Study.
    Yu R; Andrachek RG; Lehmicke LG; Pierce AA; Parker BL; Cherry JA; Freedman DL
    Environ Sci Technol; 2018 Dec; 52(24):14321-14330. PubMed ID: 30419165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.
    Weatherill J; Krause S; Voyce K; Drijfhout F; Levy A; Cassidy N
    J Contam Hydrol; 2014 Mar; 158():38-54. PubMed ID: 24424265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?
    Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM
    J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.
    Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2015 Nov; 182():231-43. PubMed ID: 26433603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.
    Meghdadi A
    Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural attenuation of a chlorinated ethene plume discharging to a stream: Integrated assessment of hydrogeological, chemical and microbial interactions.
    Ottosen CB; Rønde V; McKnight US; Annable MD; Broholm MM; Devlin JF; Bjerg PL
    Water Res; 2020 Nov; 186():116332. PubMed ID: 32871289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess N
    Hinshaw SE; Zhang T; Harrison JA; Dahlgren RA
    Water Res; 2020 Jan; 168():115161. PubMed ID: 31654960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer.
    Hunkeler D; Aravena R; Shouakar-Stash O; Weisbrod N; Nasser A; Netzer L; Ronen D
    Environ Sci Technol; 2011 Oct; 45(19):8247-53. PubMed ID: 21870853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.
    Liu Y; Phenrat T; Lowry GV
    Environ Sci Technol; 2007 Nov; 41(22):7881-7. PubMed ID: 18075103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.