BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31200222)

  • 1. Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction.
    Xu Z; Xu X; Tao X; Yao C; Tsang DCW; Cao X
    J Hazard Mater; 2019 Oct; 378():120705. PubMed ID: 31200222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced microbial reduction of Cr(VI) in soil with biochar acting as an electron shuttle: Crucial role of redox-active moieties.
    Ren J; Huang H; Zhang Z; Xu X; Zhao L; Qiu H; Cao X
    Chemosphere; 2023 Jul; 328():138601. PubMed ID: 37028729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation.
    Ke Q; Ren J; Feng K; Zhang Z; Huang W; Xu X; Zhao L; Qiu H; Cao X
    Environ Pollut; 2024 Jun; 350():124014. PubMed ID: 38642792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption.
    Xu X; Huang H; Zhang Y; Xu Z; Cao X
    Environ Pollut; 2019 Jan; 244():423-430. PubMed ID: 30352357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of Cr(VI) by biochar with Fe as electron shuttles.
    Xu J; Yin Y; Tan Z; Wang B; Guo X; Li X; Liu J
    J Environ Sci (China); 2019 Apr; 78():109-117. PubMed ID: 30665629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction.
    Xu Z; Xu X; Yu Y; Yao C; Tsang DCW; Cao X
    J Hazard Mater; 2021 Jul; 414():125483. PubMed ID: 33647614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid.
    Xu Z; Xu X; Tsang DCW; Yang F; Zhao L; Qiu H; Cao X
    J Hazard Mater; 2020 Feb; 384():121455. PubMed ID: 31668763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar-driven reduction of As(V) and Cr(VI): Effects of pyrolysis temperature and low-molecular-weight organic acids.
    Qin J; Li Q; Liu Y; Niu A; Lin C
    Ecotoxicol Environ Saf; 2020 Sep; 201():110873. PubMed ID: 32544750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of chromate reduction in soils by surface modified biochar.
    Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R
    J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar.
    Kim HB; Kim JG; Kim SH; Kwon EE; Baek K
    Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon.
    Xu Z; Yu Y; Xu X; Tsang DCW; Yao C; Fan J; Zhao L; Qiu H; Cao X
    Environ Sci Technol; 2022 Feb; 56(3):1724-1735. PubMed ID: 34978795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(VI) reduction.
    Xu Z; Xu X; Zhang Y; Yu Y; Cao X
    J Hazard Mater; 2020 Apr; 388():121794. PubMed ID: 31813692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Cr (VI) by organic acids in the presence of Al (III).
    Chen N; Lan Y; Wang B; Mao J
    J Hazard Mater; 2013 Sep; 260():150-6. PubMed ID: 23747473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
    Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B
    Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils.
    Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemodynamics of chromium reduction in soils: implications to bioavailability.
    Choppala G; Bolan N; Seshadri B
    J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell.
    Murad HA; Ahmad M; Bundschuh J; Hashimoto Y; Zhang M; Sarkar B; Ok YS
    Environ Res; 2022 Mar; 204(Pt B):112125. PubMed ID: 34592252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.