These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 31200517)

  • 1. Genome Editing in Agriculture: Technical and Practical Considerations.
    Jansing J; Schiermeyer A; Schillberg S; Fischer R; Bortesi L
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31200517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted modification of plant genomes for precision crop breeding.
    Hilscher J; Bürstmayr H; Stoger E
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27726285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook.
    Ahmar S; Gill RA; Jung KH; Faheem A; Qasim MU; Mubeen M; Zhou W
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32276445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise plant genome editing using base editors and prime editors.
    Molla KA; Sretenovic S; Bansal KC; Qi Y
    Nat Plants; 2021 Sep; 7(9):1166-1187. PubMed ID: 34518669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fruit crops in the era of genome editing: closing the regulatory gap.
    Alvarez D; Cerda-Bennasser P; Stowe E; Ramirez-Torres F; Capell T; Dhingra A; Christou P
    Plant Cell Rep; 2021 Jun; 40(6):915-930. PubMed ID: 33515309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges.
    Mushtaq M; Ahmad Dar A; Skalicky M; Tyagi A; Bhagat N; Basu U; Bhat BA; Zaid A; Ali S; Dar TU; Rai GK; Wani SH; Habib-Ur-Rahman M; Hejnak V; Vachova P; Brestic M; Çığ A; Çığ F; Erman M; El Sabagh A
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34073848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing of crops: A renewed opportunity for food security.
    Georges F; Ray H
    GM Crops Food; 2017 Jan; 8(1):1-12. PubMed ID: 28075688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing EU legislation to fit plant genome editing: The use of genome editing technologies in plant breeding requires a novel regulatory approach for new plant varieties that involves farmers.
    Ricroch AE; Ammann K; Kuntz M
    EMBO Rep; 2016 Oct; 17(10):1365-1369. PubMed ID: 27629042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts.
    Sprink T; Eriksson D; Schiemann J; Hartung F
    Plant Cell Rep; 2016 Jul; 35(7):1493-506. PubMed ID: 27142995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of base editors and prime editors advances precision genome engineering in plants.
    Hua K; Han P; Zhu JK
    Plant Physiol; 2022 Mar; 188(4):1795-1810. PubMed ID: 34962995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A research program for the socioeconomic impacts of gene editing regulation.
    Whelan AI; Lema MA
    GM Crops Food; 2017 Jan; 8(1):74-83. PubMed ID: 28080208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separate product from process: framing the debate that surrounds the potential uptake of new breeding technologies.
    Parry G; Jose S
    Physiol Plant; 2018 Dec; 164(4):372-377. PubMed ID: 29220093
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach.
    Gupta S; Kumar A; Patel R; Kumar V
    Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR plants now subject to tough GM laws in European Union.
    Callaway E
    Nature; 2018 Aug; 560(7716):16. PubMed ID: 30065322
    [No Abstract]   [Full Text] [Related]  

  • 20. CRISPR/Cas mediated genome editing in potato: Past achievements and future directions.
    Tuncel A; Qi Y
    Plant Sci; 2022 Dec; 325():111474. PubMed ID: 36174801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.