BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31200564)

  • 1. Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast.
    Meriem ZB; Khalil Y; Hersen P; Fabre E
    Cells; 2019 Jun; 8(6):. PubMed ID: 31200564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of low molecule number and chromosomal positioning to stochastic gene expression.
    Becskei A; Kaufmann BB; van Oudenaarden A
    Nat Genet; 2005 Sep; 37(9):937-44. PubMed ID: 16086016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).
    Barozai MY; Bashir F; Muzaffar S; Afzal S; Behlil F; Khan M
    Gene; 2014 Oct; 550(1):74-80. PubMed ID: 25111117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae.
    Soontorngun N
    Curr Genet; 2017 Feb; 63(1):1-7. PubMed ID: 27180089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae.
    Galgoczy DJ; Cassidy-Stone A; Llinás M; O'Rourke SM; Herskowitz I; DeRisi JL; Johnson AD
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):18069-74. PubMed ID: 15604142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae.
    Regenberg B; Grotkjaer T; Winther O; Fausbøll A; Akesson M; Bro C; Hansen LK; Brunak S; Nielsen J
    Genome Biol; 2006; 7(11):R107. PubMed ID: 17105650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.
    Guan Q; Haroon S; Bravo DG; Will JL; Gasch AP
    Genetics; 2012 Oct; 192(2):495-505. PubMed ID: 22851651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions.
    Liu J; Martin-Yken H; Bigey F; Dequin S; François JM; Capp JP
    Genome Biol Evol; 2015 Mar; 7(4):969-84. PubMed ID: 25762217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses.
    Canadell D; García-Martínez J; Alepuz P; Pérez-Ortín JE; Ariño J
    Biochim Biophys Acta; 2015 Jun; 1849(6):653-64. PubMed ID: 25900709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-talks of sensory transcription networks in response to various environmental stresses.
    Chen T; Li F; Chen BS
    Interdiscip Sci; 2009 Mar; 1(1):46-54. PubMed ID: 20640818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The stress response in the yeast Saccharomyces cerevisiae].
    Folch-Mallol JL; Garay-Arroyo A; Lledías F; Covarrubias Robles AA
    Rev Latinoam Microbiol; 2004; 46(1-2):24-46. PubMed ID: 17061523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone Methylation and Memory of Environmental Stress.
    Fabrizio P; Garvis S; Palladino F
    Cells; 2019 Apr; 8(4):. PubMed ID: 30974922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Condition-specific promoter activities in Saccharomyces cerevisiae.
    Xiong L; Zeng Y; Tang RQ; Alper HS; Bai FW; Zhao XQ
    Microb Cell Fact; 2018 Apr; 17(1):58. PubMed ID: 29631591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae.
    Uffenbeck SR; Krebs JE
    Biochem Cell Biol; 2006 Aug; 84(4):477-89. PubMed ID: 16936821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent decline in stress response capacity revealed by proteins dynamics analysis.
    Chen K; Shen W; Zhang Z; Xiong F; Ouyang Q; Luo C
    Sci Rep; 2020 Sep; 10(1):15211. PubMed ID: 32939000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage.
    Renauld H; Aparicio OM; Zierath PD; Billington BL; Chhablani SK; Gottschling DE
    Genes Dev; 1993 Jul; 7(7A):1133-45. PubMed ID: 8319906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.