These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31200617)

  • 1. Mandarin Electrolaryngeal Speech Recognition Based on WaveNet-CTC.
    Qian Z; Wang L; Zhang S; Liu C; Niu H
    J Speech Lang Hear Res; 2019 Jul; 62(7):2203-2212. PubMed ID: 31200617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of an electrolarynx with tonal control function for Mandarin.
    Wan C; Wang E; Wu L; Wang S; Wan M
    Folia Phoniatr Logop; 2012; 64(6):290-6. PubMed ID: 23467389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of on/off control for electrolaryngeal speech via artificial neural network based on visual information of lips.
    Wu L; Wan C; Wang S; Wan M
    J Voice; 2013 Mar; 27(2):259.e7-259.e16. PubMed ID: 23294707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a method for the automatic on/off control of an electrolarynx via lip deformation.
    Wan C; Wu L; Wu H; Wang S; Wan M
    J Voice; 2012 Sep; 26(5):674.e21-30. PubMed ID: 22801245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Japanese Electrolaryngeal Speech Produced by Untrained Speakers: An Observational Study Involving Healthy Volunteers.
    Sato K; Genda J; Minabe R; Taniguchi T
    J Speech Lang Hear Res; 2021 Oct; 64(10):3786-3793. PubMed ID: 34546765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Preliminary Evaluation of Electrolarynx With F0 Control Based on Capacitive Touch Technology.
    Li W; Zhaopeng Q; Yijun F; Haijun N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):629-636. PubMed ID: 29522407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of automatic and human speech recognition in null grammar.
    Juneja A
    J Acoust Soc Am; 2012 Mar; 131(3):EL256-61. PubMed ID: 22423817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract representation in the recognition of cerebral palsied speech.
    Rudzicz F; Hirst G; van Lieshout P
    J Speech Lang Hear Res; 2012 Aug; 55(4):1190-207. PubMed ID: 22271873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tone in Thai alaryngeal speech.
    Gandour J; Weinberg B; Petty SH; Dardarananda R
    J Speech Hear Disord; 1988 Feb; 53(1):23-9. PubMed ID: 3339865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of aberrant acoustic properties on the perception of sound quality in electrolarynx speech.
    Meltzner GS; Hillman RE
    J Speech Lang Hear Res; 2005 Aug; 48(4):766-79. PubMed ID: 16378472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and perceptual evaluation of amplitude-based F0 control in electrolarynx speech.
    Saikachi Y; Stevens KN; Hillman RE
    J Speech Lang Hear Res; 2009 Oct; 52(5):1360-9. PubMed ID: 19564438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing phonetic confusions using formal concept analysis.
    Peláez-Moreno C; García-Moral AI; Valverde-Albacete FJ
    J Acoust Soc Am; 2010 Sep; 128(3):1377-90. PubMed ID: 20815472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced accent/dialect identification and accentedness assessment with multi-embedding models and automatic speech recognition.
    Ghorbani S; Hansen JHL
    J Acoust Soc Am; 2024 Jun; 155(6):3848-3860. PubMed ID: 38884524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of fundamental frequency contours and sentence context in Mandarin Chinese speech intelligibility.
    Wang J; Shu H; Zhang L; Liu Z; Zhang Y
    J Acoust Soc Am; 2013 Jul; 134(1):EL91-7. PubMed ID: 23862913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental frequency variation with an electrolarynx improves speech understanding: a case study.
    Watson PJ; Schlauch RS
    Am J Speech Lang Pathol; 2009 May; 18(2):162-7. PubMed ID: 19106204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.