These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31200617)

  • 21. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. End-to-End Automatic Pronunciation Error Detection Based on Improved Hybrid CTC/Attention Architecture.
    Zhang L; Zhao Z; Ma C; Shan L; Sun H; Jiang L; Deng S; Gao C
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time Controlling Dynamics Sensing in Air Traffic System.
    Lin Y; Tan X; Yang B; Yang K; Zhang J; Yu J
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic recognition of second language speech-in-noise.
    Kim SE; Chernyak BR; Seleznova O; Keshet J; Goldrick M; Bradlow AR
    JASA Express Lett; 2024 Feb; 4(2):. PubMed ID: 38350077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An acoustical and perceptual study of vowels produced by alaryngeal speakers of Cantonese.
    Ng ML; Chu R
    Folia Phoniatr Logop; 2009; 61(2):97-104. PubMed ID: 19299898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech Vision: An End-to-End Deep Learning-Based Dysarthric Automatic Speech Recognition System.
    Shahamiri SR
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():852-861. PubMed ID: 33929963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Voice Quality in Mandarin Sarcastic Speech: An Acoustic and Electroglottographic Study.
    Li S; Gu W; Liu L; Tang P
    J Speech Lang Hear Res; 2020 Aug; 63(8):2578-2588. PubMed ID: 32762594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamental frequency, intensity, and vowel duration characteristics related to perception of Cantonese alaryngeal speech.
    Ng ML; Gilbert HR; Lerman JW
    Folia Phoniatr Logop; 2001; 53(1):36-47. PubMed ID: 11125259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feedback From Automatic Speech Recognition to Elicit Clear Speech in Healthy Speakers.
    Gutz SE; Maffei MF; Green JR
    Am J Speech Lang Pathol; 2023 Nov; 32(6):2940-2959. PubMed ID: 37824377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrolaryngeal speech produced by laryngectomized subjects: perceptual characteristics.
    Weiss MS; Basili AG
    J Speech Hear Res; 1985 Jun; 28(2):294-300. PubMed ID: 4010259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of F0 contour on perception of Mandarin Chinese speech against masking.
    Wu M
    PLoS One; 2019; 14(1):e0209976. PubMed ID: 30605452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voice onset time in Thai alaryngeal speech.
    Gandour J; Weinberg B; Petty SH; Dardarananda R
    J Speech Hear Disord; 1987 Aug; 52(3):288-94. PubMed ID: 3455451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Severity-based adaptation with limited data for ASR to aid dysarthric speakers.
    Mustafa MB; Salim SS; Mohamed N; Al-Qatab B; Siong CE
    PLoS One; 2014; 9(1):e86285. PubMed ID: 24466004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech performance of adult cantonese-speaking laryngectomees using different types of alaryngeal phonation.
    Ng ML; Kwok CL; Chow SF
    J Voice; 1997 Sep; 11(3):338-44. PubMed ID: 9297679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and evaluation of the Mandarin Chinese matrix (CMNmatrix) sentence test for the assessment of speech recognition in noise.
    Hu H; Xi X; Wong LLN; Hochmuth S; Warzybok A; Kollmeier B
    Int J Audiol; 2018 Nov; 57(11):838-850. PubMed ID: 30178681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrospective Analysis of Clinical Performance of an Estonian Speech Recognition System for Radiology: Effects of Different Acoustic and Language Models.
    Paats A; Alumäe T; Meister E; Fridolin I
    J Digit Imaging; 2018 Oct; 31(5):615-621. PubMed ID: 29713836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the perceptual contributions of vowels and consonants to Mandarin sentence intelligibility.
    Chen F; Wong LL; Wong EY
    J Acoust Soc Am; 2013 Aug; 134(2):EL178-84. PubMed ID: 23927222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.