These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 31200719)
1. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Gale AL; Mammone RM; Dodson ME; Linardi RL; Ortved KF BMC Vet Res; 2019 Jun; 15(1):201. PubMed ID: 31200719 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the Chondrogenic Differentiation Potential of Equine Synovial Membrane-Derived and Bone Marrow-Derived Mesenchymal Stem Cells. Gale AL; Linardi RL; McClung G; Mammone RM; Ortved KF Front Vet Sci; 2019; 6():178. PubMed ID: 31245393 [TBL] [Abstract][Full Text] [Related]
3. Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Neybecker P; Henrionnet C; Pape E; Grossin L; Mainard D; Galois L; Loeuille D; Gillet P; Pinzano A Stem Cell Res Ther; 2020 Jul; 11(1):316. PubMed ID: 32711576 [TBL] [Abstract][Full Text] [Related]
4. Autologous Platelet Lysate Does Not Enhance Chondrogenic Differentiation of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Despite Increased TGF-β1 Concentration. Chapman HS; Gale AL; Dodson ME; Linardi RL; Ortved KF Stem Cells Dev; 2020 Feb; 29(3):144-155. PubMed ID: 31802705 [TBL] [Abstract][Full Text] [Related]
5. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Adesida AB; Mulet-Sierra A; Jomha NM Stem Cell Res Ther; 2012 Mar; 3(2):9. PubMed ID: 22385573 [TBL] [Abstract][Full Text] [Related]
6. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering. Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710 [TBL] [Abstract][Full Text] [Related]
9. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. Sasaki A; Mizuno M; Ozeki N; Katano H; Otabe K; Tsuji K; Koga H; Mochizuki M; Sekiya I PLoS One; 2018; 13(8):e0202922. PubMed ID: 30138399 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. Arufe MC; De la Fuente A; Fuentes I; de Toro FJ; Blanco FJ J Cell Biochem; 2010 Nov; 111(4):834-45. PubMed ID: 20665538 [TBL] [Abstract][Full Text] [Related]
11. Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. Arufe MC; De la Fuente A; Fuentes-Boquete I; De Toro FJ; Blanco FJ J Cell Biochem; 2009 Sep; 108(1):145-55. PubMed ID: 19544399 [TBL] [Abstract][Full Text] [Related]
12. Expansion under hypoxic conditions enhances the chondrogenic potential of equine bone marrow-derived mesenchymal stem cells. Ranera B; Remacha AR; Álvarez-Arguedas S; Castiella T; Vázquez FJ; Romero A; Zaragoza P; Martín-Burriel I; Rodellar C Vet J; 2013 Feb; 195(2):248-51. PubMed ID: 22771146 [TBL] [Abstract][Full Text] [Related]
13. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Anderson DE; Markway BD; Bond D; McCarthy HE; Johnstone B Stem Cell Res Ther; 2016 Oct; 7(1):154. PubMed ID: 27765063 [TBL] [Abstract][Full Text] [Related]
14. The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6. Teunissen M; Verseijden F; Riemers FM; van Osch GJVM; Tryfonidou MA Vet J; 2021 Mar; 269():105605. PubMed ID: 33593496 [TBL] [Abstract][Full Text] [Related]
15. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. Shirasawa S; Sekiya I; Sakaguchi Y; Yagishita K; Ichinose S; Muneta T J Cell Biochem; 2006 Jan; 97(1):84-97. PubMed ID: 16088956 [TBL] [Abstract][Full Text] [Related]
16. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. White JL; Walker NJ; Hu JC; Borjesson DL; Athanasiou KA Tissue Eng Part A; 2018 Aug; 24(15-16):1262-1272. PubMed ID: 29478385 [TBL] [Abstract][Full Text] [Related]
17. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells. Lettry V; Hosoya K; Takagi S; Okumura M Jpn J Vet Res; 2010 May; 58(1):5-15. PubMed ID: 20645581 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. Khan WS; Adesida AB; Tew SR; Lowe ET; Hardingham TE J Orthop Res; 2010 Jun; 28(6):834-40. PubMed ID: 20058274 [TBL] [Abstract][Full Text] [Related]
19. A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Watts AE; Ackerman-Yost JC; Nixon AJ Tissue Eng Part A; 2013 Oct; 19(19-20):2275-83. PubMed ID: 23725547 [TBL] [Abstract][Full Text] [Related]
20. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Kim DS; Ko YJ; Lee MW; Park HJ; Park YJ; Kim DI; Sung KW; Koo HH; Yoo KH Cell Stress Chaperones; 2016 Nov; 21(6):1089-1099. PubMed ID: 27565660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]