These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31201000)

  • 1. Semiautomated fabrication of a custom orbital prosthesis with 3-dimensional printing technology.
    Kim SH; Shin WB; Baek SW; Yoon JS
    J Prosthet Dent; 2019 Nov; 122(5):494-497. PubMed ID: 31201000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Noncontact Facial Topography Mapping, 3-Dimensional Printing, and Silicone Casting of Orbital Prosthesis.
    Weisson EH; Fittipaldi M; Concepcion CA; Pelaez D; Grace L; Tse DT
    Am J Ophthalmol; 2020 Dec; 220():27-36. PubMed ID: 32707202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.
    He Y; Xue GH; Fu JZ
    Sci Rep; 2014 Nov; 4():6973. PubMed ID: 25427880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Letter to the Editor regarding "Semiautomated fabrication of a custom orbital prosthesis with 3-dimensional printing technology" by Kim S-H et al.
    Akshi ; Singh RD; Chand P; Verma A
    J Prosthet Dent; 2024 Mar; 131(3):540. PubMed ID: 38182454
    [No Abstract]   [Full Text] [Related]  

  • 5. Semi-automated fabrication of customized ocular prosthesis with three-dimensional printing and sublimation transfer printing technology.
    Ko J; Kim SH; Baek SW; Chae MK; Yoon JS
    Sci Rep; 2019 Feb; 9(1):2968. PubMed ID: 30814585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response to Letter to the Editor regarding, "Semi-automated fabrication of a custom orbital prosthesis with 3-dimensional printing technology".
    Kim SH; Shin WB; Baek SW; Yoon JS
    J Prosthet Dent; 2024 Mar; 131(3):541-542. PubMed ID: 38123415
    [No Abstract]   [Full Text] [Related]  

  • 7. Applications of three-dimensional printing in orbital diseases and disorders.
    Ruiters S; Mombaerts I
    Curr Opin Ophthalmol; 2019 Sep; 30(5):372-379. PubMed ID: 31261186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of negative molds technology based on three-dimensional printing in digital maxillofacial prostheses].
    Gu XY; Chen XB; Jiao T; Zhang FQ; Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Jun; 52(6):336-341. PubMed ID: 28613053
    [No Abstract]   [Full Text] [Related]  

  • 9. Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: A case report.
    Cevik P; Kocacikli M
    Int J Artif Organs; 2020 May; 43(5):343-347. PubMed ID: 31739725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A preliminary study on the cavity forming of the facial prostheses based on three dimensional printing].
    Sun J; Zhang FQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Dec; 45(12):773-4. PubMed ID: 21211249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.
    Alam MS; Sugavaneswaran M; Arumaikkannu G; Mukherjee B
    Orbit; 2017 Aug; 36(4):223-227. PubMed ID: 28375653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Digital Method to Fabricate the Ocular Portion of An Orbital Prosthesis with A Smartphone Camera, Color Calibration and Digital Printing.
    Jauregui Ulloa J; Salazar-Gamarra R; Mesquita AMM; Aguirre F; Dib LL
    J Prosthodont; 2021 Jan; 30(1):91-94. PubMed ID: 33270296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of 3D technologies in the workflow of auricular prosthetics: A method using optical scanning and stereolithography 3D printing.
    Bannink T; Bouman S; Wolterink R; van Veen R; van Alphen M
    J Prosthet Dent; 2021 Apr; 125(4):708-713. PubMed ID: 32611482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Emerging Role of 3-Dimensional Printing in Rhinology.
    Stokken JK; Pallanch JF
    Otolaryngol Clin North Am; 2017 Jun; 50(3):583-588. PubMed ID: 28392038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital fabrication of orbital prosthesis mold using 3D photography and computer-aided design.
    Chiu M; Hong SC; Wilson G
    Graefes Arch Clin Exp Ophthalmol; 2017 Feb; 255(2):425-426. PubMed ID: 27844207
    [No Abstract]   [Full Text] [Related]  

  • 16. DIY 3D printing of custom orthopaedic implants: a proof of concept study.
    Frame M; Leach W
    Surg Technol Int; 2014 Mar; 24():314-7. PubMed ID: 24574013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing in orthopaedic surgery: review of current and future applications.
    Mulford JS; Babazadeh S; Mackay N
    ANZ J Surg; 2016 Sep; 86(9):648-53. PubMed ID: 27071485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New comprehensive procedure for custom-made total ankle replacements: Medical imaging, joint modeling, prosthesis design, and 3D printing.
    Belvedere C; Siegler S; Fortunato A; Caravaggi P; Liverani E; Durante S; Ensini A; Konow T; Leardini A
    J Orthop Res; 2019 Mar; 37(3):760-768. PubMed ID: 30537247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Approach to 3D Printing of Facial Prostheses Using Combination of Open Source Software and Conventional Techniques: A Case Report.
    B Jamayet N; J Abdullah Y; A Rajion Z; Husein A; K Alam M
    Bull Tokyo Dent Coll; 2017; 58(2):117-124. PubMed ID: 28724860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streamlining the manufacture of custom titanium orbital plates with a stereolithographic three-dimensional printed model.
    Mustafa SF; Evans PL; Sugar AW; Key SJ
    Br J Oral Maxillofac Surg; 2017 Jun; 55(5):546-547. PubMed ID: 28392025
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.