These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31201012)

  • 1. Increasing step width reduces the requirements for subtalar joint moments and powers.
    Maharaj JN; Murry LE; Cresswell AG; Lichtwark GA
    J Biomech; 2019 Jul; 92():29-34. PubMed ID: 31201012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtalar Joint Pronation and Energy Absorption Requirements During Walking are Related to Tibialis Posterior Tendinous Tissue Strain.
    Maharaj JN; Cresswell AG; Lichtwark GA
    Sci Rep; 2017 Dec; 7(1):17958. PubMed ID: 29263387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot structure is significantly associated to subtalar joint kinetics and mechanical energetics.
    Maharaj JN; Cresswell AG; Lichtwark GA
    Gait Posture; 2017 Oct; 58():159-165. PubMed ID: 28783556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Immediate Effect of Foot Orthoses on Subtalar Joint Mechanics and Energetics.
    Maharaj JN; Cresswell AG; Lichtwark GA
    Med Sci Sports Exerc; 2018 Jul; 50(7):1449-1456. PubMed ID: 29509638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.
    Jenkyn TR; Shultz R; Giffin JR; Birmingham TB
    Gait Posture; 2010 Feb; 31(2):153-8. PubMed ID: 19897368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of toe-in and toe-in with wider step width on level walking knee biomechanics in varus, valgus, and neutral knee alignments.
    Bennett HJ; Shen G; Cates HE; Zhang S
    Knee; 2017 Dec; 24(6):1326-1334. PubMed ID: 28970124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait.
    Van Gheluwe B; Kirby KA; Hagman F
    J Am Podiatr Med Assoc; 2005; 95(6):531-41. PubMed ID: 16291844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of step width on balance control and response strategies during perturbed walking in healthy young adults.
    Molina LK; Small GH; Neptune RR
    J Biomech; 2023 Aug; 157():111731. PubMed ID: 37494856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of the subtalar joint and its function during walking.
    Piazza SJ
    Foot Ankle Clin; 2005 Sep; 10(3):425-42, v. PubMed ID: 16081013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of overground vs. treadmill walking in healthy individuals.
    Lee SJ; Hidler J
    J Appl Physiol (1985); 2008 Mar; 104(3):747-55. PubMed ID: 18048582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of frontal plane knee load caused by lateral trunk lean depends on step width.
    Anderson J; King S; Przybyla A; Ranganath L; Barton G
    Gait Posture; 2018 Mar; 61():483-487. PubMed ID: 29494822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body size and walking cadence affect lower extremity joint power in children's gait.
    Shultz SP; Hills AP; Sitler MR; Hillstrom HJ
    Gait Posture; 2010 Jun; 32(2):248-52. PubMed ID: 20570152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of voluntary toe-walking on body propulsion.
    Riley PO; Kerrigan DC
    Clin Biomech (Bristol, Avon); 2001 Oct; 16(8):681-7. PubMed ID: 11535349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of obesity on the biomechanics of walking at different speeds.
    Browning RC; Kram R
    Med Sci Sports Exerc; 2007 Sep; 39(9):1632-41. PubMed ID: 17805097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.