BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31201251)

  • 1. PARaDIM: A PHITS-Based Monte Carlo Tool for Internal Dosimetry with Tetrahedral Mesh Computational Phantoms.
    Carter LM; Crawford TM; Sato T; Furuta T; Choi C; Kim CH; Brown JL; Bolch WE; Zanzonico PB; Lewis JS
    J Nucl Med; 2019 Dec; 60(12):1802-1811. PubMed ID: 31201251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized dosimetry of
    Carter LM; Ocampo Ramos JC; Kesner AL
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34271565
    [No Abstract]   [Full Text] [Related]  

  • 3. Patient Size-Dependent Dosimetry Methodology Applied to
    Carter LM; Choi C; Krebs S; Beattie BJ; Kim CH; Schoder H; Bolch WE; Kesner AL
    J Nucl Med; 2021 Apr; 62(12):1805-14. PubMed ID: 33863823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation Speeds and Memory Requirements of Mesh-Type ICRP Reference Computational Phantoms in Geant4, MCNP6, and PHITS.
    Yeom YS; Han MC; Choi C; Han H; Shin B; Furuta T; Kim CH
    Health Phys; 2019 May; 116(5):664-676. PubMed ID: 30844899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.
    Furuta T; Sato T; Han MC; Yeom YS; Kim CH; Brown JL; Bolch WE
    Phys Med Biol; 2017 Jun; 62(12):4798-4810. PubMed ID: 28375140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical Note: Patient-morphed mesh-type phantoms to support personalized nuclear medicine dosimetry - a proof of concept study.
    Carter LM; Camilo Ocampo Ramos J; Bolch WE; Lewis JS; Kesner AL
    Med Phys; 2021 Apr; 48(4):2018-2026. PubMed ID: 33595863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations.
    Yeom YS; Jeong JH; Han MC; Kim CH
    Phys Med Biol; 2014 Jun; 59(12):3173-85. PubMed ID: 24862061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DOSIS: An integrated computational tool for patient-specific dosimetry in nuclear medicine by Monte Carlo and dose point kernel approaches.
    Pérez P; Valente M
    Appl Radiat Isot; 2019 Aug; 150():135-140. PubMed ID: 31146217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry.
    Lee C; Lee C; Lee JK
    Phys Med Biol; 2006 Nov; 51(21):N393-402. PubMed ID: 17047258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-beam-dependent optimization for Monte Carlo simulation in hadrontherapy using tetrahedral geometries.
    Touileb Y; Ladjal H; Beuve M; Shariat B
    Phys Med Biol; 2018 Jul; 63(13):135021. PubMed ID: 29893292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovations in Computer Technologies Have Impacted Radiation Dosimetry Through Anatomically Realistic Phantoms and Fast Monte Carlo Simulations.
    George Xu X
    Health Phys; 2019 Feb; 116(2):263-275. PubMed ID: 30585974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a nonhuman primate computational phantom for radiation dosimetry.
    Xie T; Park JS; Zhuo W; Zaidi H
    Med Phys; 2020 Feb; 47(2):736-744. PubMed ID: 31784999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry.
    Larsson E; Strand SE; Ljungberg M; Jönsson BA
    Cancer Biother Radiopharm; 2007 Jun; 22(3):438-42. PubMed ID: 17651052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical voxel-based dosimetry through GATE Monte Carlo simulation using PET/CT imaging of mice.
    Gupta A; Lee MS; Kim JH; Park S; Park HS; Kim SE; Lee DS; Lee JS
    Phys Med Biol; 2019 Apr; 64(9):095007. PubMed ID: 30913544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy.
    Finocchiaro D; Berenato S; Bertolini V; Castellani G; Lanconelli N; Versari A; Spezi E; Iori M; Fioroni F; Grassi E
    PLoS One; 2020; 15(8):e0236466. PubMed ID: 32764764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models.
    Lee C; Lodwick D; Hasenauer D; Williams JL; Lee C; Bolch WE
    Phys Med Biol; 2007 Jun; 52(12):3309-33. PubMed ID: 17664546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric Impact of a New Computational Voxel Phantom Series for the Japanese Atomic Bomb Survivors: Methodological Improvements and Organ Dose Response Functions.
    Sato T; Funamoto S; Paulbeck C; Griffin K; Lee C; Cullings H; Egbert SD; Endo A; Hertel N; Bolch WE
    Radiat Res; 2020 Oct; 194(4):390-402. PubMed ID: 33045092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies.
    Larsson E; Ljungberg M; Strand SE; Jönsson BA
    Acta Oncol; 2011 Aug; 50(6):973-80. PubMed ID: 21767199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure.
    Zhang G; Liu Q; Zeng S; Luo Q
    Phys Med Biol; 2008 Jul; 53(14):3697-722. PubMed ID: 18574316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures.
    Marshall EL; Borrego D; Tran T; Fudge JC; Bolch WE
    Phys Med Biol; 2018 Mar; 63(5):055006. PubMed ID: 29405126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.