BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 31201303)

  • 21. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics.
    Hadnagy A; Beaulieu R; Balicki D
    Mol Cancer Ther; 2008 Apr; 7(4):740-8. PubMed ID: 18413789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition.
    Huang J; Schriefer AE; Yang W; Cliften PF; Rudnick DA
    Epigenetics; 2014 Nov; 9(11):1521-31. PubMed ID: 25482284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone deacetylase-dependent establishment and maintenance of broad low-level histone acetylation within a tissue-specific chromatin domain.
    Im H; Grass JA; Christensen HM; Perkins A; Bresnick EH
    Biochemistry; 2002 Dec; 41(51):15152-60. PubMed ID: 12484752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone Deacetylase Inhibitors and Diabetic Kidney Disease.
    Hadden MJ; Advani A
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30189630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Expression and Role of Histone Acetylation and Deacetylation in Dental Pulp Cells.
    Yamauchi Y; Duncan HF
    Methods Mol Biol; 2023; 2588():279-293. PubMed ID: 36418694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state.
    Ye C; Han K; Lei J; Zeng K; Zeng S; Ju H; Yu L
    Br J Pharmacol; 2018 Nov; 175(22):4209-4217. PubMed ID: 30076612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors.
    Bush EW; McKinsey TA
    Circ Res; 2010 Feb; 106(2):272-84. PubMed ID: 20133912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Histone Deacetylases in the Pathogenesis of Salivary Gland Tumors and Therapeutic Targeting Options.
    Manou M; Kanakoglou DS; Loupis T; Vrachnos DM; Theocharis S; Papavassiliou AG; Piperi C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and transient oxygen consumption increase following acute HDAC/KDAC inhibition in Drosophila tissue.
    Becker L; Nogueira MS; Klima C; de Angelis MH; Peleg S
    Sci Rep; 2018 Mar; 8(1):4199. PubMed ID: 29520020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors.
    Ito T; Umehara T; Sasaki K; Nakamura Y; Nishino N; Terada T; Shirouzu M; Padmanabhan B; Yokoyama S; Ito A; Yoshida M
    Chem Biol; 2011 Apr; 18(4):495-507. PubMed ID: 21513886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders.
    Konsoula Z; Barile FA
    J Pharmacol Toxicol Methods; 2012; 66(3):215-20. PubMed ID: 22902970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic regulatory mechanisms of histone acetylation in the treatment of cutaneous squamous cell carcinoma.
    Joshi TP; Farr MA; Lewis DJ
    Expert Opin Ther Targets; 2021 Nov; 25(11):1025-1026. PubMed ID: 34814792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment.
    Peng X; Sun Z; Kuang P; Chen J
    Eur J Med Chem; 2020 Dec; 208():112831. PubMed ID: 32961382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacological Histone Deacetylation Distinguishes Transcriptional Regulators.
    Rafehi H; Karagiannis TC; El-Osta A
    Curr Top Med Chem; 2017; 17(14):1611-1622. PubMed ID: 27823568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and biologic analysis of histone deacetylase inhibitors with diverse specificities.
    Newbold A; Matthews GM; Bots M; Cluse LA; Clarke CJ; Banks KM; Cullinane C; Bolden JE; Christiansen AJ; Dickins RA; Miccolo C; Chiocca S; Kral AM; Ozerova ND; Miller TA; Methot JL; Richon VM; Secrist JP; Minucci S; Johnstone RW
    Mol Cancer Ther; 2013 Dec; 12(12):2709-21. PubMed ID: 24092806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanistic approach to anticancer therapy: targeting the cell cycle with histone deacetylase inhibitors.
    Mork CN; Faller DV; Spanjaard RA
    Curr Pharm Des; 2005; 11(9):1091-104. PubMed ID: 15853658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression.
    Soliman ML; Rosenberger TA
    Mol Cell Biochem; 2011 Jun; 352(1-2):173-80. PubMed ID: 21359531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors.
    Khan N; Jeffers M; Kumar S; Hackett C; Boldog F; Khramtsov N; Qian X; Mills E; Berghs SC; Carey N; Finn PW; Collins LS; Tumber A; Ritchie JW; Jensen PB; Lichenstein HS; Sehested M
    Biochem J; 2008 Jan; 409(2):581-9. PubMed ID: 17868033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension.
    Chen F; Li X; Aquadro E; Haigh S; Zhou J; Stepp DW; Weintraub NL; Barman SA; Fulton DJR
    Free Radic Biol Med; 2016 Oct; 99():167-178. PubMed ID: 27498117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetically maintained SW13+ and SW13- subtypes have different oncogenic potential and convert with HDAC1 inhibition.
    Davis MR; Daggett JJ; Pascual AS; Lam JM; Leyva KJ; Cooper KE; Hull EE
    BMC Cancer; 2016 May; 16():316. PubMed ID: 27188282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.