These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31201518)

  • 1. Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects.
    Moisan K; Cordovez V; van de Zande EM; Raaijmakers JM; Dicke M; Lucas-Barbosa D
    Oecologia; 2019 Jul; 190(3):589-604. PubMed ID: 31201518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatiles from soil-borne fungi affect directional growth of roots.
    Moisan K; Raaijmakers JM; Dicke M; Lucas-Barbosa D; Cordovez V
    Plant Cell Environ; 2021 Jan; 44(1):339-345. PubMed ID: 32996612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth.
    Syed-Ab-Rahman SF; Carvalhais LC; Chua ET; Chung FY; Moyle PM; Eltanahy EG; Schenk PM
    Sci Total Environ; 2019 Nov; 692():267-280. PubMed ID: 31349168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen
    Cordovez V; Mommer L; Moisan K; Lucas-Barbosa D; Pierik R; Mumm R; Carrion VJ; Raaijmakers JM
    Front Plant Sci; 2017; 8():1262. PubMed ID: 28785271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles.
    Hammerbacher A; Coutinho TA; Gershenzon J
    Plant Cell Environ; 2019 Oct; 42(10):2827-2843. PubMed ID: 31222757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.
    Pineda A; Soler R; Weldegergis BT; Shimwela MM; VAN Loon JJ; Dicke M
    Plant Cell Environ; 2013 Feb; 36(2):393-404. PubMed ID: 22812443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.
    Lee S; Hung R; Yap M; Bennett JW
    Arch Microbiol; 2015 Jun; 197(5):723-7. PubMed ID: 25771960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil.
    Fiers M; Lognay G; Fauconnier ML; Jijakli MH
    PLoS One; 2013; 8(6):e66805. PubMed ID: 23818966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.
    Werner S; Polle A; Brinkmann N
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8651-65. PubMed ID: 27638017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Language of plants: Where is the word?
    Šimpraga M; Takabayashi J; Holopainen JK
    J Integr Plant Biol; 2016 Apr; 58(4):343-9. PubMed ID: 26563972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds.
    Casarrubia S; Sapienza S; Fritz H; Daghino S; Rosenkranz M; Schnitzler JP; Martin F; Perotto S; Martino E
    PLoS One; 2016; 11(12):e0168236. PubMed ID: 27973595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress.
    Singh J; Singh P; Vaishnav A; Ray S; Rajput RS; Singh SM; Singh HB
    Microbiol Res; 2021 May; 246():126721. PubMed ID: 33581445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbe-induced plant volatiles.
    Sharifi R; Lee SM; Ryu CM
    New Phytol; 2018 Nov; 220(3):684-691. PubMed ID: 29266296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds.
    Meier AR; Hunter MD
    J Chem Ecol; 2019 Jul; 45(7):610-625. PubMed ID: 31281942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by
    Choudoir M; Rossabi S; Gebert M; Helmig D; Fierer N
    mSystems; 2019; 4(2):. PubMed ID: 30863793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp.
    Cordovez V; Schop S; Hordijk K; Dupré de Boulois H; Coppens F; Hanssen I; Raaijmakers JM; Carrión VJ
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.
    Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R
    Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of discrete bioactive microbial volatiles on plants and fungi.
    Piechulla B; Lemfack MC; Kai M
    Plant Cell Environ; 2017 Oct; 40(10):2042-2067. PubMed ID: 28643880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Small Talk: Volatiles in Fungal-Bacterial Interactions.
    Schmidt R; Etalo DW; de Jager V; Gerards S; Zweers H; de Boer W; Garbeva P
    Front Microbiol; 2015; 6():1495. PubMed ID: 26779150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.