These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31201530)

  • 1. Why are rhodanines less efficient reagents in Diels-Alder reactions than isorhodanines? A quantum chemical study.
    Tejchman W; Michalski M; Zborowski KK; Berski S
    J Mol Model; 2019 Jun; 25(7):190. PubMed ID: 31201530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Relationship between Reactivity and Electronic Structure in Isorhodanine Derivatives Using Computer Simulations.
    Michalski M; Berski S
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing reactivity of carbonyl compounds via hydrogen-bond formation. A DFT study of the hetero-Diels-Alder reaction between butadiene derivative and acetone in chloroform.
    Domingo LR; Andrés J
    J Org Chem; 2003 Oct; 68(22):8662-8. PubMed ID: 14575500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dienophilic reactivity of 2-phosphaindolizines: a conceptual DFT investigation.
    Beig N; Peswani A; Bansal RK
    Beilstein J Org Chem; 2022; 18():1217-1224. PubMed ID: 36158172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry at the Dirac point: Diels-Alder reactivity of graphene.
    Sarkar S; Bekyarova E; Haddon RC
    Acc Chem Res; 2012 Apr; 45(4):673-82. PubMed ID: 22404165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diels-Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions.
    Yang YF; Liang Y; Liu F; Houk KN
    J Am Chem Soc; 2016 Feb; 138(5):1660-7. PubMed ID: 26804318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular electron density theory study of the enhanced reactivity of aza aromatic compounds participating in Diels-Alder reactions.
    Domingo LR; Ríos-Gutiérrez M; Pérez P
    Org Biomol Chem; 2020 Jan; 18(2):292-304. PubMed ID: 31844866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels-Alder reactions.
    Soto-Delgado J; Domingo LR; Contreras R
    Org Biomol Chem; 2010 Aug; 8(16):3678-83. PubMed ID: 20526483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of the Diels-Alder reaction of Li⁺@C₆₀ with cyclohexadiene: greatly increased reaction rate by encapsulated Li⁺.
    Ueno H; Kawakami H; Nakagawa K; Okada H; Ikuma N; Aoyagi S; Kokubo K; Matsuo Y; Oshima T
    J Am Chem Soc; 2014 Aug; 136(31):11162-7. PubMed ID: 25006694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Lewis acids on Diels-Alder reaction reactivity: a conceptual density functional theory study.
    Xia Y; Yin D; Rong C; Xu Q; Yin D; Liu S
    J Phys Chem A; 2008 Oct; 112(40):9970-7. PubMed ID: 18785697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent effect on the degree of (a)synchronicity in polar Diels-Alder reactions from the perspective of the reaction force constant analysis.
    Yepes D; Martínez-Araya JI; Jaque P
    J Mol Model; 2017 Dec; 24(1):33. PubMed ID: 29288466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium Cation-Catalyzed Benzene Diels-Alder Reaction: Insights on the Molecular Mechanism Within the Molecular Electron Density Theory.
    Domingo LR; Pérez P
    J Org Chem; 2020 Oct; 85(20):13121-13132. PubMed ID: 32870671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study.
    Hernández-Mancera JP; Núñez-Zarur F; Vivas-Reyes R
    ChemistryOpen; 2020 Jul; 9(7):748-761. PubMed ID: 32670739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction energetics on long-range corrected density functional theory: Diels-Alder reactions.
    Singh RK; Tsuneda T
    J Comput Chem; 2013 Feb; 34(5):379-86. PubMed ID: 23037888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Activation of Aromatic Diels-Alder Reactions.
    Narsaria AK; Hamlin TA; Lammertsma K; Bickelhaupt FM
    Chemistry; 2019 Jul; 25(42):9902-9912. PubMed ID: 31111976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling polar Diels-Alder reactions with conceptual DFT analysis and the distortion/interaction model.
    Sarotti AM
    Org Biomol Chem; 2014 Jan; 12(1):187-99. PubMed ID: 24085334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the catalytic effect of water in the intramolecular Diels–Alder reaction of quinone systems: a theoretical study.
    Soto-Delgado J; Aizman A; Contreras R; Domingo LR
    Molecules; 2012 Nov; 17(11):13687-703. PubMed ID: 23169266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory.
    Geerlings P; Ayers PW; Toro-Labbé A; Chattaraj PK; De Proft F
    Acc Chem Res; 2012 May; 45(5):683-95. PubMed ID: 22283422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of rate constants of Diels-Alder reactions and application to design of Diels-Alder ligation.
    Tang SY; Shi J; Guo QX
    Org Biomol Chem; 2012 Apr; 10(13):2673-82. PubMed ID: 22370563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular structure, heteronuclear resonance assisted hydrogen bond analysis, chemical reactivity and first hyperpolarizability of a novel ethyl-4-{[(2,4-dinitrophenyl)-hydrazono]-ethyl}-3,5-dimethyl-1H-pyrrole-2-carboxylate: a combined DFT and AIM approach.
    Singh RN; Kumar A; Tiwari RK; Rawat P; Baboo V; Verma D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():295-304. PubMed ID: 22446779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.