These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31201532)

  • 1. Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location.
    Heuer A; Schubö A
    Psychol Res; 2020 Nov; 84(8):2111-2121. PubMed ID: 31201532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Mechanisms for Distractor Suppression and Target Facilitation.
    Noonan MP; Adamian N; Pike A; Printzlau F; Crittenden BM; Stokes MG
    J Neurosci; 2016 Feb; 36(6):1797-807. PubMed ID: 26865606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticipatory Distractor Suppression Elicited by Statistical Regularities in Visual Search.
    Wang B; van Driel J; Ort E; Theeuwes J
    J Cogn Neurosci; 2019 Oct; 31(10):1535-1548. PubMed ID: 31180265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages.
    Qiu N; Zhang B; Allenmark F; Nasemann J; Tsai SY; Müller HJ; Shi Z
    Psychophysiology; 2023 Oct; 60(10):e14351. PubMed ID: 37277926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of distracting inputs by visual-spatial cues is driven by anticipatory alpha activity.
    Zhao C; Kong Y; Li D; Huang J; Kong L; Li X; Jensen O; Song Y
    PLoS Biol; 2023 Mar; 21(3):e3002014. PubMed ID: 36888690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to inhibit a distractor location? Statistical learning versus active, top-down suppression.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 May; 80(4):860-870. PubMed ID: 29476331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probability cueing of singleton-distractor locations in visual search: Priority-map- versus dimension-based inhibition?
    Zhang B; Allenmark F; Liesefeld HR; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1146-1163. PubMed ID: 31144860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proactive distractor suppression elicited by statistical regularities in visual search.
    Huang C; Vilotijević A; Theeuwes J; Donk M
    Psychon Bull Rev; 2021 Jun; 28(3):918-927. PubMed ID: 33620698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression.
    Redding ZV; Fiebelkorn IC
    J Neurosci; 2024 Jun; 44(25):. PubMed ID: 38729761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cueing the location of a distractor: an inhibitory mechanism of spatial attention?
    Munneke J; Van der Stigchel S; Theeuwes J
    Acta Psychol (Amst); 2008 Sep; 129(1):101-7. PubMed ID: 18589391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory Mechanisms of Preparing for Visual Distraction.
    de Vries IEJ; Savran E; van Driel J; Olivers CNL
    J Cogn Neurosci; 2019 Dec; 31(12):1873-1894. PubMed ID: 31418334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct neural substrates underlying target facilitation and distractor suppression: A combined voxel-based morphometry and resting-state functional connectivity study.
    Xie K; Jin Z; Ni X; Zhang J; Li L
    Neuroimage; 2020 Nov; 221():117149. PubMed ID: 32659355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distractor positivity (Pd) signals lowering of attentional priority: evidence from event-related potentials and individual differences.
    Burra N; Kerzel D
    Psychophysiology; 2014 Jul; 51(7):685-96. PubMed ID: 24707976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel tests of capture by irrelevant abrupt onsets: No evidence for a mediating role of search task difficulty during color search.
    Schmid RR; Ansorge U
    Atten Percept Psychophys; 2023 Apr; 85(3):667-684. PubMed ID: 36460927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distractor suppression does and does not depend on pre-distractor alpha-band activity.
    Redding ZV; Fiebelkorn IC
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proactively location-based suppression elicited by statistical learning.
    Kong S; Li X; Wang B; Theeuwes J
    PLoS One; 2020; 15(6):e0233544. PubMed ID: 32479531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial filtering restricts the attentional window during both singleton and feature-based visual search.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2020 Jul; 82(5):2360-2378. PubMed ID: 31993978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cued recognition task: dissociating the abrupt onset effect from the social and arrow cueing effect.
    Xu B; Tanaka JW
    Atten Percept Psychophys; 2015 Jan; 77(1):97-110. PubMed ID: 25190323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.