These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 31201559)
1. Diagnosis of Thyroid Nodules Based on Local Non-quantitative Multi-Directional Texture Descriptor with Rotation Invariant Characteristics for Ultrasound Image. Bi L; Shuang Z J Med Syst; 2019 Jun; 43(7):231. PubMed ID: 31201559 [TBL] [Abstract][Full Text] [Related]
2. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Acharya UR; Vinitha Sree S; Krishnan MM; Molinari F; Garberoglio R; Suri JS Ultrasonics; 2012 Apr; 52(4):508-20. PubMed ID: 22154208 [TBL] [Abstract][Full Text] [Related]
3. ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Acharya UR; Faust O; Sree SV; Molinari F; Suri JS Comput Methods Programs Biomed; 2012 Aug; 107(2):233-41. PubMed ID: 22054816 [TBL] [Abstract][Full Text] [Related]
4. Thyroid nodule recognition based on feature selection and pixel classification methods. Bibicu D; Moraru L; Biswas A J Digit Imaging; 2013 Feb; 26(1):119-28. PubMed ID: 22546981 [TBL] [Abstract][Full Text] [Related]
5. Classification of Benign and Malignant Thyroid Nodules Using Wavelet Texture Analysis of Sonograms. Ardakani AA; Gharbali A; Mohammadi A J Ultrasound Med; 2015 Nov; 34(11):1983-9. PubMed ID: 26396168 [TBL] [Abstract][Full Text] [Related]
6. Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. Savelonas MA; Iakovidis DK; Legakis I; Maroulis D IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):519-27. PubMed ID: 19193513 [TBL] [Abstract][Full Text] [Related]
7. Rotation-invariant image and video description with local binary pattern features. Zhao G; Ahonen T; Matas J; Pietikäinen M IEEE Trans Image Process; 2012 Apr; 21(4):1465-77. PubMed ID: 22086501 [TBL] [Abstract][Full Text] [Related]
8. Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition. Prochazka A; Gulati S; Holinka S; Smutek D Technol Cancer Res Treat; 2019 Jan; 18():1533033819830748. PubMed ID: 30774015 [TBL] [Abstract][Full Text] [Related]
9. Patch-based classification of thyroid nodules in ultrasound images using direction independent features extracted by two-threshold binary decomposition. Prochazka A; Gulati S; Holinka S; Smutek D Comput Med Imaging Graph; 2019 Jan; 71():9-18. PubMed ID: 30453231 [TBL] [Abstract][Full Text] [Related]
10. Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature. Deng W; Shi Q; Luo K; Yang Y; Ning N J Med Syst; 2019 Apr; 43(6):152. PubMed ID: 31016467 [TBL] [Abstract][Full Text] [Related]
11. Cascade marker removal algorithm for thyroid ultrasound images. Ying X; Zhang Y; Yu M; Wei X; Zhu J; Gao J; Liu Z; Shen H; Zhang R; Li X; Yu R Med Biol Eng Comput; 2020 Nov; 58(11):2641-2656. PubMed ID: 32840765 [TBL] [Abstract][Full Text] [Related]
12. Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. Li Z; Liu G; Yang Y; You J IEEE Trans Image Process; 2012 Apr; 21(4):2130-40. PubMed ID: 22049368 [TBL] [Abstract][Full Text] [Related]
13. Rotation-invariant multiresolution texture analysis using radon and wavelet transforms. Jafari-Khouzani K; Soltanian-Zadeh H IEEE Trans Image Process; 2005 Jun; 14(6):783-95. PubMed ID: 15971777 [TBL] [Abstract][Full Text] [Related]
14. Locally rotation, contrast, and scale invariant descriptors for texture analysis. Mellor M; Hong BW; Brady M IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):52-61. PubMed ID: 18000324 [TBL] [Abstract][Full Text] [Related]
15. Robust rotation-invariant texture classification using a model based approach. Campisi P; Neri A; Panci G; Scarano G IEEE Trans Image Process; 2004 Jun; 13(6):782-91. PubMed ID: 15648869 [TBL] [Abstract][Full Text] [Related]
16. Thyroid nodule recognition in computed tomography using first order statistics. Peng W; Liu C; Xia S; Shao D; Chen Y; Liu R; Zhang Z Biomed Eng Online; 2017 Jun; 16(1):67. PubMed ID: 28592331 [TBL] [Abstract][Full Text] [Related]
17. A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography. Song G; Xue F; Zhang C J Ultrasound Med; 2015 Oct; 34(10):1753-60. PubMed ID: 26307120 [TBL] [Abstract][Full Text] [Related]
18. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Iakovidis DK; Keramidas EG; Maroulis D Artif Intell Med; 2010 Sep; 50(1):33-41. PubMed ID: 20427164 [TBL] [Abstract][Full Text] [Related]
19. Computerized detection and quantification of microcalcifications in thyroid nodules. Chen KY; Chen CN; Wu MH; Ho MC; Tai HC; Huang WC; Chung YC; Chen A; Chang KJ Ultrasound Med Biol; 2011 Jun; 37(6):870-8. PubMed ID: 21546154 [TBL] [Abstract][Full Text] [Related]
20. Completed local ternary pattern for rotation invariant texture classification. Rassem TH; Khoo BE ScientificWorldJournal; 2014; 2014():373254. PubMed ID: 24977193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]