These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31201604)

  • 1. Chemical Modification of 1-Aminocyclopropane Carboxylic Acid (ACC) Oxidase: Cysteine Mutational Analysis, Characterization, and Bioconjugation with a Nitroxide Spin Label.
    Tachon S; Fournier E; Decroos C; Mansuelle P; Etienne E; Maresca M; Martinho M; Belle V; Tron T; Simaan AJ
    Mol Biotechnol; 2019 Sep; 61(9):650-662. PubMed ID: 31201604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.
    Brisson L; El Bakkali-Taheri N; Giorgi M; Fadel A; Kaizer J; Réglier M; Tron T; Ajandouz el H; Simaan AJ
    J Biol Inorg Chem; 2012 Aug; 17(6):939-49. PubMed ID: 22711330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase.
    Zhang Z; Barlow JN; Baldwin JE; Schofield CJ
    Biochemistry; 1997 Dec; 36(50):15999-6007. PubMed ID: 9398335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene.
    Rocklin AM; Tierney DL; Kofman V; Brunhuber NM; Hoffman BM; Christoffersen RE; Reich NO; Lipscomb JD; Que L
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7905-9. PubMed ID: 10393920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from tomato in Escherichia coli.
    Zhang Z; Schofield CJ; Baldwin JE; Thomas P; John P
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):77-85. PubMed ID: 7717997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hunt for the Closed Conformation of the Fruit-Ripening Enzyme 1-Aminocyclopropane-1-carboxylic Oxidase: A Combined Electron Paramagnetic Resonance and Molecular Dynamics Study.
    Fournier E; Tachon S; Fowler NJ; Gerbaud G; Mansuelle P; Dorlet P; de Visser SP; Belle V; Simaan AJ; Martinho M
    Chemistry; 2019 Oct; 25(60):13766-13776. PubMed ID: 31424584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO(2) activation in the biosynthesis of ethylene.
    Zhou J; Rocklin AM; Lipscomb JD; Que L; Solomon EI
    J Am Chem Soc; 2002 May; 124(17):4602-9. PubMed ID: 11971707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA complexes with human apurinic/apyrimidinic endonuclease 1: structural insights revealed by pulsed dipolar EPR with orthogonal spin labeling.
    Krumkacheva OA; Shevelev GY; Lomzov AA; Dyrkheeva NS; Kuzhelev AA; Koval VV; Tormyshev VM; Polienko YF; Fedin MV; Pyshnyi DV; Lavrik OI; Bagryanskaya EG
    Nucleic Acids Res; 2019 Sep; 47(15):7767-7780. PubMed ID: 31329919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.
    Tayeh MA; Howe DL; Salleh HM; Sheflyan GY; Son JK; Woodard RW
    J Protein Chem; 1999 Jan; 18(1):55-68. PubMed ID: 10071929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway.
    Jafari Z; Haddad R; Hosseini R; Garoosi G
    Mol Biol Rep; 2013 Feb; 40(2):1341-50. PubMed ID: 23076530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches.
    El Bakkali-Tahéri N; Tachon S; Orio M; Bertaina S; Martinho M; Robert V; Réglier M; Tron T; Dorlet P; Simaan AJ
    Arch Biochem Biophys; 2017 Jun; 623-624():31-41. PubMed ID: 28522117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.
    Sallmann M; Oldenburg F; Braun B; Réglier M; Simaan AJ; Limberg C
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12325-8. PubMed ID: 26190407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus.
    Meng D; Shen L; Yang R; Zhang X; Sheng J
    Biochim Biophys Acta; 2014 Jan; 1840(1):120-8. PubMed ID: 24016603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.
    Yim WJ; Kim KY; Lee YW; Sundaram SP; Lee Y; Sa TM
    J Plant Physiol; 2014 Jul; 171(12):1064-75. PubMed ID: 24974333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity.
    Yoo A; Seo YS; Jung JW; Sung SK; Kim WT; Lee W; Yang DR
    J Struct Biol; 2006 Dec; 156(3):407-20. PubMed ID: 17046279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction.
    Rocklin AM; Kato K; Liu HW; Que L; Lipscomb JD
    J Biol Inorg Chem; 2004 Mar; 9(2):171-82. PubMed ID: 14714198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme.
    Zhang Z; Ren JS; Clifton IJ; Schofield CJ
    Chem Biol; 2004 Oct; 11(10):1383-94. PubMed ID: 15489165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB.
    Balo AR; Caruso A; Tao L; Tantillo DJ; Seyedsayamdost MR; Britt RD
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates.
    Caliandro R; Polsinelli I; Demitri N; Musiani F; Martens S; Benini S
    Int J Biol Macromol; 2021 Feb; 171():89-99. PubMed ID: 33412202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of argininosuccinate lyase from M. tuberculosis: significance of a c-terminal cysteine in catalysis and thermal stability.
    Mishra A; Surolia A
    IUBMB Life; 2017 Nov; 69(11):896-907. PubMed ID: 29044950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.