These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31201621)

  • 1. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry.
    Zhao F; Melke J; Ito K; van Rietbergen B; Hofmann S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1965-1977. PubMed ID: 31201621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    J Biomech; 2018 Oct; 79():232-237. PubMed ID: 30149981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor.
    Zermatten E; Vetsch JR; Ruffoni D; Hofmann S; Müller R; Steinfeld A
    Ann Biomed Eng; 2014 May; 42(5):1085-94. PubMed ID: 24492950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold.
    Zhao F; Vaughan TJ; Mcnamara LM
    Biomech Model Mechanobiol; 2015 Apr; 14(2):231-43. PubMed ID: 24903125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3342. PubMed ID: 32323478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture.
    Channasanon S; Kaewkong P; Chantaweroad S; Tesavibul P; Pratumwal Y; Otarawanna S; Kirihara S; Tanodekaew S
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):587-598. PubMed ID: 37014922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering.
    Cruel M; Bensidhoum M; Nouguier-Lehon C; Dessombz O; Becquart P; Petite H; Hoc T
    Tissue Eng Part C Methods; 2015 Sep; 21(9):863-71. PubMed ID: 25634115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the interplay between scaffold geometry, induced shear stresses, and cell proliferation within a packed bed perfusion bioreactor.
    Thibeaux R; Duval H; Smaniotto B; Vennat E; Néron D; David B
    Biotechnol Prog; 2019 Nov; 35(6):e2880. PubMed ID: 31271252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures.
    Rubert M; Vetsch JR; Lehtoviita I; Sommer M; Zhao F; Studart AR; Müller R; Hofmann S
    Tissue Eng Part A; 2021 Sep; 27(17-18):1192-1204. PubMed ID: 33297842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore.
    Sanaei P; Cummings LJ; Waters SL; Griffiths IM
    Biomech Model Mechanobiol; 2019 Jun; 18(3):589-605. PubMed ID: 30542833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics analysis of the fluid environment of 3D printed gradient structure in interfacial tissue engineering.
    Zhang B
    Med Eng Phys; 2024 Jun; 128():104173. PubMed ID: 38789213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds.
    Ali D; Sen S
    Ann Biomed Eng; 2018 Dec; 46(12):2023-2035. PubMed ID: 30030771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation.
    Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J
    Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of porous scaffold deformation induced by medium perfusion.
    Podichetty JT; Madihally SV
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):737-48. PubMed ID: 24259467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Framework to Evaluate the Hydrodynamics of Cell Scaffold Geometries.
    Puleri DF; Roychowdhury S; Ames J; Randles A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2299-2302. PubMed ID: 33018467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.