These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 31201682)
1. Isolation, Expansion, and Characterization of Wharton's Jelly-Derived Mesenchymal Stromal Cell: Method to Identify Functional Passages for Experiments. Aung SW; Abu Kasim NH; Ramasamy TS Methods Mol Biol; 2019; 2045():323-335. PubMed ID: 31201682 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Liu S; Hou KD; Yuan M; Peng J; Zhang L; Sui X; Zhao B; Xu W; Wang A; Lu S; Guo Q J Biosci Bioeng; 2014 Feb; 117(2):229-235. PubMed ID: 23899897 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872 [TBL] [Abstract][Full Text] [Related]
4. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix. Hendijani F; Sadeghi-Aliabadi H; Haghjooy Javanmard S Cell Tissue Bank; 2014 Dec; 15(4):555-65. PubMed ID: 24532125 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Tomecka E; Lech W; Zychowicz M; Sarnowska A; Murzyn M; Oldak T; Domanska-Janik K; Buzanska L; Rozwadowska N Cells; 2021 Mar; 10(4):. PubMed ID: 33804841 [TBL] [Abstract][Full Text] [Related]
8. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells. Chu W; Zhang F; Zeng X; He F; Shang G; Guo T; Wang Q; Wu J; Li T; Zhong ZZ; Liang X; Hu J; Liu M Stem Cell Res Ther; 2024 May; 15(1):131. PubMed ID: 38702793 [TBL] [Abstract][Full Text] [Related]
9. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization. Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792 [TBL] [Abstract][Full Text] [Related]
10. 3D Decellularized Native Extracellular Matrix Scaffold for In Vitro Culture Expansion of Human Wharton's Jelly-Derived Mesenchymal Stem Cells (hWJ MSCs). Sundaram B; Cherian AG; Kumar S Methods Mol Biol; 2018; 1577():35-53. PubMed ID: 28963712 [TBL] [Abstract][Full Text] [Related]
11. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. La Rocca G; Lo Iacono M; Corsello T; Corrao S; Farina F; Anzalone R Curr Stem Cell Res Ther; 2013 Jan; 8(1):100-13. PubMed ID: 23317435 [TBL] [Abstract][Full Text] [Related]
12. Culturing on Wharton's jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. Hao H; Chen G; Liu J; Ti D; Zhao Y; Xu S; Fu X; Han W PLoS One; 2013; 8(3):e58314. PubMed ID: 23516461 [TBL] [Abstract][Full Text] [Related]
13. Manufacturing of human Wharton's jelly stem cells for clinical use: selection of serum is important. Kong CM; Lin HD; Biswas A; Bongso A; Fong CY Cytotherapy; 2019 Apr; 21(4):483-495. PubMed ID: 30879965 [TBL] [Abstract][Full Text] [Related]
14. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Swamynathan P; Venugopal P; Kannan S; Thej C; Kolkundar U; Bhagwat S; Ta M; Majumdar AS; Balasubramanian S Stem Cell Res Ther; 2014 Jul; 5(4):88. PubMed ID: 25069491 [TBL] [Abstract][Full Text] [Related]
15. Isolation of a novel embryonic stem cell cord blood-derived population with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells. Gounari E; Daniilidis A; Tsagias N; Michopoulou A; Kouzi K; Koliakos G Cytotherapy; 2019 Feb; 21(2):246-259. PubMed ID: 30522805 [TBL] [Abstract][Full Text] [Related]