BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31201838)

  • 1. Visualizing protein motion in Couette flow by all-atom molecular dynamics.
    Walinda E; Morimoto D; Shirakawa M; Scheler U; Sugase K
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129383. PubMed ID: 31201838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of tethered polymers in shear flow.
    Gratton Y; Slater GW
    Eur Phys J E Soft Matter; 2005 Aug; 17(4):455-65. PubMed ID: 16132157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model.
    Xing L; Li Y; Li T
    PDA J Pharm Sci Technol; 2019; 73(3):260-275. PubMed ID: 30651339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic fourier flow have in common?
    Reyes FV; Santos A; Garzó V
    Phys Rev Lett; 2010 Jan; 104(2):028001. PubMed ID: 20366626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and deformation of biomolecular condensates under the action of shear flow.
    Coronas LE; Van T; Iorio A; Lapidus LJ; Feig M; Sterpone F
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanism of Protein Unfolding under Shear: A Lattice Boltzmann Molecular Dynamics Study.
    Sterpone F; Derreumaux P; Melchionna S
    J Phys Chem B; 2018 Feb; 122(5):1573-1579. PubMed ID: 29328657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056322. PubMed ID: 22181513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteins in a shear flow.
    Szymczak P; Cieplak M
    J Chem Phys; 2007 Oct; 127(15):155106. PubMed ID: 17949222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three Weaknesses for Three Perturbations: Comparing Protein Unfolding Under Shear, Force, and Thermal Stresses.
    Languin-Cattoën O; Melchionna S; Derreumaux P; Stirnemann G; Sterpone F
    J Phys Chem B; 2018 Dec; 122(50):11922-11930. PubMed ID: 30444631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cell deformation on leukocyte rolling adhesion in shear flow.
    Lei X; Lawrence MB; Dong C
    J Biomech Eng; 1999 Dec; 121(6):636-43. PubMed ID: 10633265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a compound vesicle in shear flow.
    Veerapaneni SK; Young YN; Vlahovska PM; Bławzdziewicz J
    Phys Rev Lett; 2011 Apr; 106(15):158103. PubMed ID: 21568618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillating Couette flow for in vitro cell loading.
    Nalim R; Pekkan K; Sun HB; Yokota H
    J Biomech; 2004 Jun; 37(6):939-42. PubMed ID: 15111082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependence of nuclear magnetic resonance quadrupole interactions for polymers under shear.
    Atkin JM; Cormier RJ; Callaghan PT
    J Magn Reson; 2005 Jan; 172(1):91-7. PubMed ID: 15589412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
    Hu QH; Li JY; Zhang MY; Zhu XR
    Artif Organs; 2012 Apr; 36(4):429-33. PubMed ID: 21995643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations.
    Vögele M; Köfinger J; Hummer G
    J Phys Chem B; 2019 Jun; 123(24):5099-5106. PubMed ID: 31132280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.