These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 3120191)
1. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Schatten H; Walter M; Mazia D; Biessmann H; Paweletz N; Coffe G; Schatten G Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8488-92. PubMed ID: 3120191 [TBL] [Abstract][Full Text] [Related]
2. The centrosome cycle in the mitotic cycle of sea urchin eggs. Paweletz N; Mazia D; Finze EM Exp Cell Res; 1984 May; 152(1):47-65. PubMed ID: 6538848 [TBL] [Abstract][Full Text] [Related]
3. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Schatten H; Schatten G; Mazia D; Balczon R; Simerly C Proc Natl Acad Sci U S A; 1986 Jan; 83(1):105-9. PubMed ID: 2417231 [TBL] [Abstract][Full Text] [Related]
4. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging. Thompson-Coffe C; Coffe G; Schatten H; Mazia D; Schatten G Cell Motil Cytoskeleton; 1996; 33(3):197-207. PubMed ID: 8674139 [TBL] [Abstract][Full Text] [Related]
5. T-1, a mitotic arrester, alters centrosome configurations in fertilized sea urchin eggs. Itoh TJ; Schatten H; Schatten G; Mazia D; Kobayashi A; Sato H Cell Motil Cytoskeleton; 1990; 16(2):146-54. PubMed ID: 2198112 [TBL] [Abstract][Full Text] [Related]
6. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis. Schatten H; Walter M; Biessmann H; Schatten G Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924 [TBL] [Abstract][Full Text] [Related]
7. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material. Schatten H; Hueser CN; Chakrabarti A Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368 [TBL] [Abstract][Full Text] [Related]
8. Centrosomes and the cell cycle. Sluder G J Cell Sci Suppl; 1989; 12():253-75. PubMed ID: 2635706 [TBL] [Abstract][Full Text] [Related]
9. Motility and centrosomal organization during sea urchin and mouse fertilization. Schatten H; Schatten G Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956 [TBL] [Abstract][Full Text] [Related]
10. 225-Kilodalton phosphoprotein associated with mitotic centrosomes in sea urchin eggs. Kuriyama R Cell Motil Cytoskeleton; 1989; 12(2):90-103. PubMed ID: 2653643 [TBL] [Abstract][Full Text] [Related]
11. Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus. Mazia D; Paweletz N; Sluder G; Finze EM Proc Natl Acad Sci U S A; 1981 Jan; 78(1):377-81. PubMed ID: 6941253 [TBL] [Abstract][Full Text] [Related]
12. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs. Schatten H; Chakrabarti A Eur J Cell Biol; 1998 Jan; 75(1):9-20. PubMed ID: 9523150 [TBL] [Abstract][Full Text] [Related]
13. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes. Sluder G; Rieder CL J Cell Biol; 1985 Mar; 100(3):897-903. PubMed ID: 3972900 [TBL] [Abstract][Full Text] [Related]
14. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus. Hollenbeck PJ; Cande WZ Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803 [TBL] [Abstract][Full Text] [Related]
15. The reproduction of centrosomes: nuclear versus cytoplasmic controls. Sluder G; Miller FJ; Rieder CL J Cell Biol; 1986 Nov; 103(5):1873-81. PubMed ID: 3782286 [TBL] [Abstract][Full Text] [Related]
16. Structural effects of mercaptoethanol during mitotic block of sea urchin eggs. Harris P Exp Cell Res; 1976 Jan; 97():63-73. PubMed ID: 942698 [No Abstract] [Full Text] [Related]
17. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Lingle WL; Lukasiewicz K; Salisbury JL Adv Exp Med Biol; 2005; 570():393-421. PubMed ID: 18727509 [TBL] [Abstract][Full Text] [Related]
18. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Kose H; Karr TL Mech Dev; 1995 Jun; 51(2-3):275-88. PubMed ID: 7547474 [TBL] [Abstract][Full Text] [Related]
19. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus. Harris PJ Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989 [TBL] [Abstract][Full Text] [Related]
20. A constitutive 70 kDa heat-shock protein is localized on the fibres of spindles and asters at metaphase in an ATP-dependent manner: a new chaperone role is proposed. Agueli C; Geraci F; Giudice G; Chimenti L; Cascino D; Sconzo G Biochem J; 2001 Dec; 360(Pt 2):413-9. PubMed ID: 11716770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]