These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 31202033)

  • 1. Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.
    Antsov M; Polyakov B; Zadin V; Mets M; Oras S; Vahtrus M; Lõhmus R; Dorogin L; Vlassov S
    Micron; 2019 Sep; 124():102686. PubMed ID: 31202033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abrupt elastic-to-plastic transition in pentagonal nanowires under bending.
    Vlassov S; Mets M; Polyakov B; Bian J; Dorogin L; Zadin V
    Beilstein J Nanotechnol; 2019; 10():2468-2476. PubMed ID: 31921525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material characterisation of nanowires with intrinsic stress.
    Mills S; Sader JE; Boland JJ
    Nanotechnology; 2017 Sep; 28(35):355706. PubMed ID: 28656901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic modulus of β-Ga
    Trausa A; Oras S; Vlassov S; Antsov M; Tiirats T; Kyritsakis A; Polyakov B; Butanovs E
    Beilstein J Nanotechnol; 2024; 15():704-712. PubMed ID: 38919166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations.
    Vlassov S; Polyakov B; Oras S; Vahtrus M; Antsov M; Šutka A; Smits K; Dorogin LM; Lõhmus R
    Nanotechnology; 2016 Aug; 27(33):335701. PubMed ID: 27377119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of nanowires based on optical diffraction images of the bent shape.
    Muraoka M; Tobe R
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4566-74. PubMed ID: 19928119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy.
    Volk J; Radó J; Baji Z; Erdélyi R
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy in mechanical measurements of single nanowires.
    Pruchnik BC; Fidelus JD; Gacka E; Mika K; Zaraska L; Sulka GD; Gotszalk TP
    Ultramicroscopy; 2024 Sep; 263():113985. PubMed ID: 38759603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-friction nanojoint prototype.
    Vlassov S; Oras S; Antsov M; Butikova J; Lõhmus R; Polyakov B
    Nanotechnology; 2018 May; 29(19):195707. PubMed ID: 29469059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic recovery and self-healing in longitudinally twinned SiGe nanowires.
    Shikder MRA; Ramasubramanian A; Maksud M; Yurkiv V; Yoo J; Harris CT; Vasudevamurthy G; Mashayek F; Subramanian A
    Nanoscale; 2019 May; 11(18):8959-8966. PubMed ID: 31017158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM.
    Reischl B; Rohl AL; Kuronen A; Nordlund K
    Sci Rep; 2017 Nov; 7(1):16257. PubMed ID: 29176635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical elasticity of vapour-liquid-solid grown GaN nanowires.
    Chen Y; Stevenson I; Pouy R; Wang L; McIlroy DN; Pounds T; Grant Norton M; Eric Aston D
    Nanotechnology; 2007 Apr; 18(13):135708. PubMed ID: 21730393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of gold nanowires prepared by nanoskiving approach.
    Fang Z; Geng Y; Wang J; Yan Y; Zhang G
    Nanoscale; 2020 Apr; 12(15):8194-8199. PubMed ID: 32255141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.
    Qin Q; Xu F; Cao Y; Ro PI; Zhu Y
    Small; 2012 Aug; 8(16):2571-6. PubMed ID: 22619003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotribological behavior of a single silver nanowire on graphite.
    Zeng X; Peng Y; Lang H; Cao X
    Nanotechnology; 2018 Feb; 29(8):085706. PubMed ID: 29256869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between surface stress and apparent Young's modulus of top-down silicon nanowires.
    Pennelli G; Totaro M; Nannini A
    ACS Nano; 2012 Dec; 6(12):10727-34. PubMed ID: 23130945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires.
    Gordon MJ; Baron T; Dhalluin F; Gentile P; Ferret P
    Nano Lett; 2009 Feb; 9(2):525-9. PubMed ID: 19159318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Piezoelectric Response from InGaN Nanowires with Spatially Modulated Composition and Topography over a Textured Si(100) Substrate.
    Wang P; Song C; Wang X; Chen H; Qian Y; Rao L; Zhou G; Nötzel R
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7517-7528. PubMed ID: 33538580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.