These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 31202073)
1. The application of machine learning methods for prediction of metal sorption onto biochars. Zhu X; Wang X; Ok YS J Hazard Mater; 2019 Oct; 378():120727. PubMed ID: 31202073 [TBL] [Abstract][Full Text] [Related]
2. The application of machine learning methods for prediction of metal immobilization remediation by biochar amendment in soil. Sun Y; Zhang Y; Lu L; Wu Y; Zhang Y; Kamran MA; Chen B Sci Total Environ; 2022 Jul; 829():154668. PubMed ID: 35318058 [TBL] [Abstract][Full Text] [Related]
3. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091 [TBL] [Abstract][Full Text] [Related]
4. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302 [TBL] [Abstract][Full Text] [Related]
5. Co-pyrolysis of biomass and phosphate tailing to produce potential phosphorus-rich biochar: efficient removal of heavy metals and the underlying mechanisms. Yang F; Lv J; Zhou Y; Wu S; Sima J Environ Sci Pollut Res Int; 2023 Feb; 30(7):17804-17816. PubMed ID: 36203042 [TBL] [Abstract][Full Text] [Related]
6. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163 [TBL] [Abstract][Full Text] [Related]
7. Application of machine learning in prediction of Pb Huang W; Wang L; Zhu J; Dong L; Hu H; Yao H; Wang L; Lin Z Environ Sci Pollut Res Int; 2024 Apr; 31(18):27286-27303. PubMed ID: 38507168 [TBL] [Abstract][Full Text] [Related]
8. Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments. Chen L; Hu J; Wang H; He Y; Deng Q; Wu F Sci Total Environ; 2024 Sep; 944():173955. PubMed ID: 38879031 [TBL] [Abstract][Full Text] [Related]
9. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bogusz A; Oleszczuk P; Dobrowolski R Bioresour Technol; 2015 Nov; 196():540-9. PubMed ID: 26295440 [TBL] [Abstract][Full Text] [Related]
10. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Jiang S; Huang L; Nguyen TA; Ok YS; Rudolph V; Yang H; Zhang D Chemosphere; 2016 Jan; 142():64-71. PubMed ID: 26206747 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Son EB; Poo KM; Chang JS; Chae KJ Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991 [TBL] [Abstract][Full Text] [Related]
12. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Islam MS; Kwak JH; Nzediegwu C; Wang S; Palansuriya K; Kwon EE; Naeth MA; El-Din MG; Ok YS; Chang SX Environ Pollut; 2021 Jul; 281():117094. PubMed ID: 33848767 [TBL] [Abstract][Full Text] [Related]
13. Lead and cadmium sorption mechanisms on magnetically modified biochars. Trakal L; Veselská V; Šafařík I; Vítková M; Číhalová S; Komárek M Bioresour Technol; 2016 Mar; 203():318-24. PubMed ID: 26748045 [TBL] [Abstract][Full Text] [Related]
14. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). Xiao J; Hu R; Chen G J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255 [TBL] [Abstract][Full Text] [Related]
15. Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network. Ke B; Nguyen H; Bui XN; Bui HB; Nguyen-Thoi T J Environ Manage; 2021 Sep; 293():112808. PubMed ID: 34034129 [TBL] [Abstract][Full Text] [Related]
16. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693 [TBL] [Abstract][Full Text] [Related]
17. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Cui X; Fang S; Yao Y; Li T; Ni Q; Yang X; He Z Sci Total Environ; 2016 Aug; 562():517-525. PubMed ID: 27107650 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Bandara T; Xu J; Potter ID; Franks A; Chathurika JBAJ; Tang C Chemosphere; 2020 Sep; 254():126745. PubMed ID: 32315813 [TBL] [Abstract][Full Text] [Related]
19. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Amin MT; Alazba AA; Shafiq M Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527 [TBL] [Abstract][Full Text] [Related]
20. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar. Shen T; Peng H; Yuan X; Liang Y; Liu S; Wu Z; Leng L; Qin P J Hazard Mater; 2024 Mar; 466():133442. PubMed ID: 38244458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]