These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31202130)
1. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. Wu LM; Lai L; Lu Q; Mei P; Wang YQ; Cheng L; Liu Y Colloids Surf B Biointerfaces; 2019 Sep; 181():593-601. PubMed ID: 31202130 [TBL] [Abstract][Full Text] [Related]
2. Influence of calcium ions on rhamnolipid and rhamnolipid/anionic surfactant adsorption and self-assembly. Chen M; Dong C; Penfold J; Thomas RK; Smyth TJ; Perfumo A; Marchant R; Banat IM; Stevenson P; Parry A; Tucker I; Grillo I Langmuir; 2013 Mar; 29(12):3912-23. PubMed ID: 23445348 [TBL] [Abstract][Full Text] [Related]
3. Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Chen ML; Penfold J; Thomas RK; Smyth TJ; Perfumo A; Marchant R; Banat IM; Stevenson P; Parry A; Tucker I; Grillo I Langmuir; 2010 Dec; 26(23):17958-68. PubMed ID: 21043468 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Rahimi K; Lotfabad TB; Jabeen F; Mohammad Ganji S Colloids Surf B Biointerfaces; 2019 Sep; 181():943-952. PubMed ID: 31382344 [TBL] [Abstract][Full Text] [Related]
5. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
6. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Helvaci SS; Peker S; Ozdemir G Colloids Surf B Biointerfaces; 2004 Jun; 35(3-4):225-33. PubMed ID: 15261035 [TBL] [Abstract][Full Text] [Related]
7. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering. Motta AM; Mariani P; Itri R; Spinozzi F Colloids Surf B Biointerfaces; 2024 Sep; 241():114038. PubMed ID: 38905813 [TBL] [Abstract][Full Text] [Related]
8. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
9. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
10. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
11. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic properties of rhamnolipid micellization and adsorption. Mańko D; Zdziennicka A; Jańczuk B Colloids Surf B Biointerfaces; 2014 Jul; 119():22-9. PubMed ID: 24840749 [TBL] [Abstract][Full Text] [Related]
13. Interfacial and Solution Aggregation Behavior of a Series of Bioinspired Rhamnolipid Congeners Rha-C14-C Palos Pacheco R; Kegel LL; Pemberton JE J Phys Chem B; 2021 Dec; 125(49):13585-13596. PubMed ID: 34860023 [TBL] [Abstract][Full Text] [Related]
14. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
15. Micellization of Rhamnolipid Biosurfactants and Their Applications in Oil Recovery: Insights from Mesoscale Simulations. Lee MT J Phys Chem B; 2021 Sep; 125(34):9895-9909. PubMed ID: 34423979 [TBL] [Abstract][Full Text] [Related]
16. Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Chen ML; Penfold J; Thomas RK; Smyth TJ; Perfumo A; Marchant R; Banat IM; Stevenson P; Parry A; Tucker I; Grillo I Langmuir; 2010 Dec; 26(23):18281-92. PubMed ID: 21028852 [TBL] [Abstract][Full Text] [Related]
17. Rhamnolipid Adsorption in Soil: Factors, Unique Features, and Considerations for Use as Green Antizoosporic Agents. Soltani Dashtbozorg S; Kohl J; Ju LK J Agric Food Chem; 2016 May; 64(17):3330-7. PubMed ID: 27054522 [TBL] [Abstract][Full Text] [Related]
18. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Bai L; McClements DJ J Colloid Interface Sci; 2016 Oct; 479():71-79. PubMed ID: 27372634 [TBL] [Abstract][Full Text] [Related]
19. The performance of surfactant mixtures at low temperatures. Liley JR; Penfold J; Thomas RK; Tucker I; Petkov J; Stevenson P; Banat IM; Marchant R; Rudden M; Webster J J Colloid Interface Sci; 2019 Jan; 534():64-71. PubMed ID: 30212657 [TBL] [Abstract][Full Text] [Related]
20. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Ochoa-Loza FJ; Noordman WH; Jannsen DB; Brusseau ML; Maier RM Chemosphere; 2007 Jan; 66(9):1634-42. PubMed ID: 16965801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]