These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31202224)

  • 1. The effect of soft repulsive interactions on the diffusion of particles in quasi-one-dimensional channels: A hopping time approach.
    Ahmadi S; Schmidt M; Spiteri RJ; Bowles RK
    J Chem Phys; 2019 Jun; 150(22):224501. PubMed ID: 31202224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in quasi-one-dimensional channels: A small system n, p, T, transition state theory for hopping times.
    Ahmadi S; Bowles RK
    J Chem Phys; 2017 Apr; 146(15):154505. PubMed ID: 28433039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transition state theory for calculating hopping times and diffusion in highly confined fluids.
    Wanasundara SN; Spiteri RJ; Bowles RK
    J Chem Phys; 2014 Jan; 140(2):024505. PubMed ID: 24437894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal and anomalous diffusion in highly confined hard disk fluid mixtures.
    Ball CD; MacWilliam ND; Percus JK; Bowles RK
    J Chem Phys; 2009 Feb; 130(5):054504. PubMed ID: 19206981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crossover from single file to Fickian diffusion.
    Sané J; Padding JT; Louis AA
    Faraday Discuss; 2010; 144():285-99; discussion 323-45, 467-81. PubMed ID: 20158035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hopping time of a hard disk fluid in a narrow channel.
    Mon KK; Percus JK
    J Chem Phys; 2007 Sep; 127(9):094702. PubMed ID: 17824754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculating the hopping times of confined fluids: two hard disks in a box.
    Bowles RK; Mon KK; Percus JK
    J Chem Phys; 2004 Dec; 121(21):10668-73. PubMed ID: 15549951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of interacting Brownian particles: Jamming and anomalous diffusion.
    Savel'ev S; Marchesoni F; Taloni A; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021119. PubMed ID: 17025405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective Motion of Repulsive Brownian Particles in Single-File Diffusion with and without Overtaking.
    Ooshida T; Goto S; Otsuki M
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.
    Saltzman EJ; Schweizer KS
    J Chem Phys; 2006 Jul; 125(4):44509. PubMed ID: 16942158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel.
    Lucena D; Tkachenko DV; Nelissen K; Misko VR; Ferreira WP; Farias GA; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031147. PubMed ID: 22587078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two definitions of the hopping time in a confined fluid of finite particles.
    Kalinay P; Percus JK
    J Chem Phys; 2008 Oct; 129(15):154117. PubMed ID: 19045186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian dynamics mean first passage time of two hard disks diffusing in a channel.
    Mon KK
    J Chem Phys; 2009 May; 130(18):184701. PubMed ID: 19449937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hopping times of two hard disks diffusing in a channel.
    Mon KK; Percus JK
    J Chem Phys; 2006 Dec; 125(24):244704. PubMed ID: 17199365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interactions in ribbon channels: from quasi-one-dimensional to quasi-two-dimensional behavior.
    Novikov S; Rice SA; Cui B; Diamant H; Lin B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031403. PubMed ID: 21230073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range hydrodynamic correlations in quasi-one-dimensional circular and straight geometries.
    Kosheleva E; Leahy B; Diamant H; Lin B; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041402. PubMed ID: 23214584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport coefficients of soft repulsive particle fluids.
    Heyes DM; Brańka AC
    J Phys Condens Matter; 2008 Mar; 20(11):115102. PubMed ID: 21694216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. I. Activated relaxation, kinetic vitrification, and fragility.
    Yang J; Schweizer KS
    J Chem Phys; 2011 May; 134(20):204908. PubMed ID: 21639478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. I. Dynamic crossover and elasticity.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244906. PubMed ID: 19566180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional Gaussian-core fluid: ordering and crossover from normal diffusion to single-file dynamics.
    Herrera-Velarde S; Pérez-Angel G; Castañeda-Priego R
    Soft Matter; 2016 Nov; 12(44):9047-9057. PubMed ID: 27774539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.