These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31202231)

  • 1. Finding multiple reaction pathways of ligand unbinding.
    Rydzewski J; Valsson O
    J Chem Phys; 2019 Jun; 150(22):221101. PubMed ID: 31202231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
    Nunes-Alves A; Zuckerman DM; Arantes GM
    Biophys J; 2018 Mar; 114(5):1058-1066. PubMed ID: 29539393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
    Mondal J; Ahalawat N; Pandit S; Kay LE; Vallurupalli P
    PLoS Comput Biol; 2018 May; 14(5):e1006180. PubMed ID: 29775455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
    Schiffer JM; Feher VA; Malmstrom RD; Sida R; Amaro RE
    Biophys J; 2016 Oct; 111(8):1631-1640. PubMed ID: 27760351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2008 Oct; 129(15):155102. PubMed ID: 19045232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
    Cabeza de Vaca I; Qian Y; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2018 Jun; 14(6):3279-3288. PubMed ID: 29708338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibly Sampling Conformations and Binding Modes Using Molecular Darting.
    Gill SC; Mobley DL
    J Chem Theory Comput; 2021 Jan; 17(1):302-314. PubMed ID: 33289558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing Protein-Ligand Recognition Pathways in Coarse-Grained Simulation.
    Dandekar BR; Mondal J
    J Phys Chem Lett; 2020 Jul; 11(13):5302-5311. PubMed ID: 32520567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-ligand binding free energies from exhaustive docking.
    Purisima EO; Hogues H
    J Phys Chem B; 2012 Jun; 116(23):6872-9. PubMed ID: 22432509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model binding site for testing scoring functions in molecular docking.
    Wei BQ; Baase WA; Weaver LH; Matthews BW; Shoichet BK
    J Mol Biol; 2002 Sep; 322(2):339-55. PubMed ID: 12217695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant.
    Feher VA; Schiffer JM; Mermelstein DJ; Mih N; Pierce LCT; McCammon JA; Amaro RE
    Biophys J; 2019 Jan; 116(2):205-214. PubMed ID: 30606449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations.
    Xie B; Nguyen TH; Minh DDL
    J Chem Theory Comput; 2017 Jun; 13(6):2930-2944. PubMed ID: 28430432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Prediction of Binders and Nonbinders for T4 Lysozyme by gREST Simulations.
    Niitsu A; Re S; Oshima H; Kamiya M; Sugita Y
    J Chem Inf Model; 2019 Sep; 59(9):3879-3888. PubMed ID: 31390205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment-based computation of binding free energies by systematic sampling.
    Clark M; Meshkat S; Talbot GT; Carnevali P; Wiseman JS
    J Chem Inf Model; 2009 Aug; 49(8):1901-13. PubMed ID: 19610599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping transiently formed and sparsely populated conformations on a complex energy landscape.
    Wang Y; Papaleo E; Lindorff-Larsen K
    Elife; 2016 Aug; 5():. PubMed ID: 27552057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics.
    Wang K; Chodera JD; Yang Y; Shirts MR
    J Comput Aided Mol Des; 2013 Dec; 27(12):989-1007. PubMed ID: 24297454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.