BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31202460)

  • 1. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis.
    Zhou Y; Lu X; Huang D; Lu Y; Zhang H; Zhang L; Yu P; Wang F; Wang Y
    Biochem Biophys Res Commun; 2019 Aug; 516(1):157-162. PubMed ID: 31202460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protease inhibitor JO146 demonstrates a critical role for CtHtrA for Chlamydia trachomatis reversion from penicillin persistence.
    Ong VA; Marsh JW; Lawrence A; Allan JA; Timms P; Huston WM
    Front Cell Infect Microbiol; 2013; 3():100. PubMed ID: 24392355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target.
    Marsh JW; Ong VA; Lott WB; Timms P; Tyndall JD; Huston WM
    Future Microbiol; 2017 Jul; 12():817-829. PubMed ID: 28593794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of a conserved role for Chlamydia HtrA in the replication phase of the chlamydial developmental cycle.
    Patel P; De Boer L; Timms P; Huston WM
    Microbes Infect; 2014 Aug; 16(8):690-4. PubMed ID: 25066238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis.
    Gloeckl S; Ong VA; Patel P; Tyndall JD; Timms P; Beagley KW; Allan JA; Armitage CW; Turnbull L; Whitchurch CB; Merdanovic M; Ehrmann M; Powers JC; Oleksyszyn J; Verdoes M; Bogyo M; Huston WM
    Mol Microbiol; 2013 Aug; 89(4):676-89. PubMed ID: 23796320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly.
    Slade JA; Brockett M; Singh R; Liechti GW; Maurelli AT
    PLoS Pathog; 2019 Oct; 15(10):e1008078. PubMed ID: 31622442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity.
    Prusty BK; Chowdhury SR; Gulve N; Rudel T
    Front Cell Infect Microbiol; 2018; 8():183. PubMed ID: 29900129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis.
    Claywell JE; Matschke LM; Plunkett KN; Fisher DJ
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Periplasmic Tail-Specific Protease, Tsp, Is Essential for Secondary Differentiation in
    Swoboda AR; Wood NA; Saery EA; Fisher DJ; Ouellette SP
    J Bacteriol; 2023 May; 205(5):e0009923. PubMed ID: 37092988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.
    Shima K; Kaufhold I; Eder T; Käding N; Schmidt N; Ogunsulire IM; Deenen R; Köhrer K; Friedrich D; Isay SE; Grebien F; Klinger M; Richer BC; Günther UL; Deepe GS; Rattei T; Rupp J
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA.
    Huston WM; Theodoropoulos C; Mathews SA; Timms P
    BMC Microbiol; 2008 Nov; 8():190. PubMed ID: 18986550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HtrA, fatty acids, and membrane protein interplay in
    Strange N; Luu L; Ong V; Wee BA; Phillips MJA; McCaughey L; Steele JR; Barlow CK; Cranfield CG; Myers G; Mazraani R; Rock C; Timms P; Huston WM
    J Bacteriol; 2024 Apr; 206(4):e0037123. PubMed ID: 38445896
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of Mentha suaveolens essential oil on Chlamydia trachomatis.
    Sessa R; Di Pietro M; De Santis F; Filardo S; Ragno R; Angiolella L
    Biomed Res Int; 2015; 2015():508071. PubMed ID: 25685793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro susceptibility of recent Chlamydia trachomatis clinical isolates to the CtHtrA inhibitor JO146.
    Ong VA; Lawrence A; Timms P; Vodstrcil LA; Tabrizi SN; Beagley KW; Allan JA; Hocking JS; Huston WM
    Microbes Infect; 2015; 17(11-12):738-44. PubMed ID: 26369711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development.
    Wood NA; Blocker AM; Seleem MA; Conda-Sheridan M; Fisher DJ; Ouellette SP
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873765
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimization of peptide-based inhibitors targeting the HtrA serine protease in Chlamydia: Design, synthesis and biological evaluation of pyridone-based and N-Capping group-modified analogues.
    Hwang J; Strange N; Phillips MJA; Krause AL; Heywood A; Gamble AB; Huston WM; Tyndall JDA
    Eur J Med Chem; 2021 Nov; 224():113692. PubMed ID: 34265463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolytic activation of Chlamydia trachomatis HTRA is mediated by PDZ1 domain interactions with protease domain loops L3 and LC and beta strand β5.
    Marsh JW; Lott WB; Tyndall JD; Huston WW
    Cell Mol Biol Lett; 2013 Dec; 18(4):522-37. PubMed ID: 24036669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production.
    Marsh JW; Wee BA; Tyndall JD; Lott WB; Bastidas RJ; Caldwell HD; Valdivia RH; Kari L; Huston WM
    BMC Microbiol; 2015 Sep; 15():194. PubMed ID: 26424482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.