BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31202650)

  • 1. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells.
    Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G
    J Dairy Sci; 2019 Aug; 102(8):6802-6819. PubMed ID: 31202650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA.
    Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G
    Probiotics Antimicrob Proteins; 2020 Jun; 12(2):577-588. PubMed ID: 31377945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.
    Zhang JS; Guri A; Corredig M; Morales-Rayas R; Hassan A; Griffiths M; LaPointe G
    Food Res Int; 2016 Dec; 90():147-153. PubMed ID: 29195867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of functional characteristics of mixed lactic culture producing nisin z and exopolysaccharides during continuous prefermentation of milk with immobilized cells.
    Grattepanche F; Audet P; Lacroix C
    J Dairy Sci; 2007 Dec; 90(12):5361-73. PubMed ID: 18024726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy.
    Ayala-Hernandez I; Goff HD; Corredig M
    J Dairy Sci; 2008 Jul; 91(7):2583-90. PubMed ID: 18565916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral administration of milk fermented with Lactococcus lactis subsp. cremoris FC protects mice against influenza virus infection.
    Maruo T; Gotoh Y; Nishimura H; Ohashi S; Toda T; Takahashi K
    Lett Appl Microbiol; 2012 Aug; 55(2):135-40. PubMed ID: 22642647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk.
    Wang SY; Chen HC; Dai TY; Huang IN; Liu JR; Chen MJ
    J Dairy Sci; 2011 Feb; 94(2):623-35. PubMed ID: 21257031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis.
    Odamaki T; Xiao JZ; Yonezawa S; Yaeshima T; Iwatsuki K
    J Dairy Sci; 2011 Mar; 94(3):1112-21. PubMed ID: 21338777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains.
    Yerlikaya O
    J Dairy Sci; 2019 Jan; 102(1):124-134. PubMed ID: 30391179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior and viability of spontaneous oxidative stress-resistant Lactococcus lactis mutants in experimental fermented milk processing.
    Oliveira MN; Almeida KE; Damin MR; Rochat T; Gratadoux JJ; Miyoshi A; Langella P; Azevedo V
    Genet Mol Res; 2009 Jul; 8(3):840-7. PubMed ID: 19731206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.
    Kawahara M; Nemoto M; Nakata T; Kondo S; Takahashi H; Kimura B; Kuda T
    Int Immunopharmacol; 2015 Jun; 26(2):295-303. PubMed ID: 25887264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring suppression subtractive hybridization (SSH) for discriminating Lactococcus lactis ssp. cremoris SK11 and ATCC 19257 in mixed culture based on the expression of strain-specific genes.
    Ndoye B; Lessard MH; LaPointe G; Roy D
    J Appl Microbiol; 2011 Feb; 110(2):499-512. PubMed ID: 21143356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains.
    Rodríguez-Figueroa JC; González-Córdova AF; Astiazaran-García H; Hernández-Mendoza A; Vallejo-Cordoba B
    J Dairy Sci; 2013 Jul; 96(7):4094-9. PubMed ID: 23628247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.
    Larsen N; Brøsted Werner B; Jespersen L
    Lett Appl Microbiol; 2016 Aug; 63(2):117-23. PubMed ID: 27234372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by
    Shao YX; Lei Z; Wolf PG; Gao Y; Guo YM; Zhang BK
    J Nutr; 2017 Jul; 147(7):1282-1289. PubMed ID: 28515165
    [No Abstract]   [Full Text] [Related]  

  • 17. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk.
    Porcellato D; Tranvåg M; Narvhus J
    J Dairy Sci; 2016 Sep; 99(9):7049-7052. PubMed ID: 27423953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells.
    Shah J; Desai PT; Weimer BC
    Appl Environ Microbiol; 2014 Nov; 80(22):6943-53. PubMed ID: 25192993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses.
    Chiang ML; Chen HC; Wang SY; Hsieh YL; Chen MJ
    J Food Sci; 2011 Sep; 76(7):M504-10. PubMed ID: 22417556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: development of a new starter culture.
    Kimoto-Nira H; Aoki R; Mizumachi K; Sasaki K; Naito H; Sawada T; Suzuki C
    J Dairy Sci; 2012 Apr; 95(4):2176-85. PubMed ID: 22459863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.