These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 31202650)
1. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G J Dairy Sci; 2019 Aug; 102(8):6802-6819. PubMed ID: 31202650 [TBL] [Abstract][Full Text] [Related]
2. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G Probiotics Antimicrob Proteins; 2020 Jun; 12(2):577-588. PubMed ID: 31377945 [TBL] [Abstract][Full Text] [Related]
3. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro. Zhang JS; Guri A; Corredig M; Morales-Rayas R; Hassan A; Griffiths M; LaPointe G Food Res Int; 2016 Dec; 90():147-153. PubMed ID: 29195867 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of functional characteristics of mixed lactic culture producing nisin z and exopolysaccharides during continuous prefermentation of milk with immobilized cells. Grattepanche F; Audet P; Lacroix C J Dairy Sci; 2007 Dec; 90(12):5361-73. PubMed ID: 18024726 [TBL] [Abstract][Full Text] [Related]
5. Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy. Ayala-Hernandez I; Goff HD; Corredig M J Dairy Sci; 2008 Jul; 91(7):2583-90. PubMed ID: 18565916 [TBL] [Abstract][Full Text] [Related]
6. Oral administration of milk fermented with Lactococcus lactis subsp. cremoris FC protects mice against influenza virus infection. Maruo T; Gotoh Y; Nishimura H; Ohashi S; Toda T; Takahashi K Lett Appl Microbiol; 2012 Aug; 55(2):135-40. PubMed ID: 22642647 [TBL] [Abstract][Full Text] [Related]
7. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. Wang SY; Chen HC; Dai TY; Huang IN; Liu JR; Chen MJ J Dairy Sci; 2011 Feb; 94(2):623-35. PubMed ID: 21257031 [TBL] [Abstract][Full Text] [Related]
8. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture. Larsen N; Werner BB; Vogensen FK; Jespersen L J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975 [TBL] [Abstract][Full Text] [Related]
9. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis. Odamaki T; Xiao JZ; Yonezawa S; Yaeshima T; Iwatsuki K J Dairy Sci; 2011 Mar; 94(3):1112-21. PubMed ID: 21338777 [TBL] [Abstract][Full Text] [Related]
10. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. Yerlikaya O J Dairy Sci; 2019 Jan; 102(1):124-134. PubMed ID: 30391179 [TBL] [Abstract][Full Text] [Related]
12. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice. Kawahara M; Nemoto M; Nakata T; Kondo S; Takahashi H; Kimura B; Kuda T Int Immunopharmacol; 2015 Jun; 26(2):295-303. PubMed ID: 25887264 [TBL] [Abstract][Full Text] [Related]
13. Exploring suppression subtractive hybridization (SSH) for discriminating Lactococcus lactis ssp. cremoris SK11 and ATCC 19257 in mixed culture based on the expression of strain-specific genes. Ndoye B; Lessard MH; LaPointe G; Roy D J Appl Microbiol; 2011 Feb; 110(2):499-512. PubMed ID: 21143356 [TBL] [Abstract][Full Text] [Related]
14. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains. Rodríguez-Figueroa JC; González-Córdova AF; Astiazaran-García H; Hernández-Mendoza A; Vallejo-Cordoba B J Dairy Sci; 2013 Jul; 96(7):4094-9. PubMed ID: 23628247 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification. Larsen N; Brøsted Werner B; Jespersen L Lett Appl Microbiol; 2016 Aug; 63(2):117-23. PubMed ID: 27234372 [TBL] [Abstract][Full Text] [Related]
16. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Shao YX; Lei Z; Wolf PG; Gao Y; Guo YM; Zhang BK J Nutr; 2017 Jul; 147(7):1282-1289. PubMed ID: 28515165 [No Abstract] [Full Text] [Related]
17. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk. Porcellato D; Tranvåg M; Narvhus J J Dairy Sci; 2016 Sep; 99(9):7049-7052. PubMed ID: 27423953 [TBL] [Abstract][Full Text] [Related]
18. Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells. Shah J; Desai PT; Weimer BC Appl Environ Microbiol; 2014 Nov; 80(22):6943-53. PubMed ID: 25192993 [TBL] [Abstract][Full Text] [Related]
19. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses. Chiang ML; Chen HC; Wang SY; Hsieh YL; Chen MJ J Food Sci; 2011 Sep; 76(7):M504-10. PubMed ID: 22417556 [TBL] [Abstract][Full Text] [Related]
20. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: development of a new starter culture. Kimoto-Nira H; Aoki R; Mizumachi K; Sasaki K; Naito H; Sawada T; Suzuki C J Dairy Sci; 2012 Apr; 95(4):2176-85. PubMed ID: 22459863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]