BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31202853)

  • 1. Role of cuticle hydrocarbons composition in the salinity tolerance of aquatic beetles.
    Botella-Cruz M; Pallarés S; Millán A; Velasco J
    J Insect Physiol; 2019; 117():103899. PubMed ID: 31202853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuticle hydrocarbons in saline aquatic beetles.
    Botella-Cruz M; Villastrigo A; Pallarés S; López-Gallego E; Millán A; Velasco J
    PeerJ; 2017; 5():e3562. PubMed ID: 28717597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).
    Pallarés S; Arribas P; Bilton DT; Millán A; Velasco J
    PLoS One; 2015; 10(4):e0124299. PubMed ID: 25886355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic Beetles.
    Botella-Cruz M; Velasco J; Millán A; Hetz S; Pallarés S
    Insects; 2021 Mar; 12(4):. PubMed ID: 33806018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation.
    Pallarés S; Botella-Cruz M; Arribas P; Millán A; Velasco J
    J Exp Biol; 2017 Apr; 220(Pt 7):1277-1286. PubMed ID: 28104801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.
    Pallarés S; Arribas P; Bilton DT; Millán A; Velasco J; Ribera I
    Mol Ecol; 2017 Oct; 26(20):5614-5628. PubMed ID: 28833872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?
    Pallarés S; Velasco J; Millán A; Bilton DT; Arribas P
    PeerJ; 2016; 4():e2382. PubMed ID: 27635346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why do ants differ in acclimatory ability? Biophysical mechanisms behind cuticular hydrocarbon acclimation across species.
    Baumgart L; Wittke M; Morsbach S; Abou B; Menzel F
    J Exp Biol; 2022 Aug; 225(16):. PubMed ID: 35775442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage.
    Arribas P; Andújar C; Abellán P; Velasco J; Millán A; Ribera I
    Mol Ecol; 2014 Feb; 23(2):360-73. PubMed ID: 24372998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy.
    Céspedes V; Pallarés S; Arribas P; Millán A; Velasco J
    J Insect Physiol; 2013 Oct; 59(10):1076-84. PubMed ID: 23973816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila.
    de Oliveira CC; Manfrin MH; Sene Fde M; Jackson LL; Etges WJ
    BMC Evol Biol; 2011 Jun; 11():179. PubMed ID: 21699713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis.
    Awater-Salendo S; Schulz H; Hilker M; Fürstenau B
    J Chem Ecol; 2020 Dec; 46(11-12):1032-1046. PubMed ID: 33123870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions.
    Sprenger PP; Burkert LH; Abou B; Federle W; Menzel F
    J Exp Biol; 2018 May; 221(Pt 9):. PubMed ID: 29615527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait.
    Menzel F; Blaimer BB; Schmitt T
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28298343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A costly chemical trait: phenotypic condition dependence of cuticular hydrocarbons in a dung beetle.
    Berson JD; Simmons LW
    J Evol Biol; 2018 Dec; 31(12):1772-1781. PubMed ID: 30178526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps.
    Wurdack M; Polidori C; Keller A; Feldhaar H; Schmitt T
    Evolution; 2017 Nov; 71(11):2562-2571. PubMed ID: 28791674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California.
    Buellesbach J; Whyte BA; Cash E; Gibson JD; Scheckel KJ; Sandidge R; Tsutsui ND
    J Chem Ecol; 2018 Dec; 44(12):1101-1114. PubMed ID: 30430363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive dynamics of cuticular hydrocarbons in Drosophila.
    Rajpurohit S; Hanus R; Vrkoslav V; Behrman EL; Bergland AO; Petrov D; Cvačka J; Schmidt PS
    J Evol Biol; 2017 Jan; 30(1):66-80. PubMed ID: 27718537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of climatic variability in shaping intraspecific variation of thermal tolerance in Mediterranean water beetles.
    Pallarés S; Garoffolo D; Rodríguez B; Sánchez-Fernández D
    Insect Sci; 2024 Feb; 31(1):285-298. PubMed ID: 37370260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress.
    Sandoval-Gil JM; Ruiz JM; Marín-Guirao L; Bernardeau-Esteller J; Sánchez-Lizaso JL
    Mar Environ Res; 2014 Apr; 95():39-61. PubMed ID: 24411277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.