BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31203161)

  • 1. Splice-switching small molecules: A new therapeutic approach to modulate gene expression.
    Taladriz-Sender A; Campbell E; Burley GA
    Methods; 2019 Sep; 167():134-142. PubMed ID: 31203161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More than a messenger: Alternative splicing as a therapeutic target.
    Black AJ; Gamarra JR; Giudice J
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194395. PubMed ID: 31271898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics.
    Urbanski LM; Leclair N; Anczuków O
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1476. PubMed ID: 29693319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes.
    Zhang J; Harvey SE; Cheng C
    Nucleic Acids Res; 2019 Apr; 47(7):3667-3679. PubMed ID: 30698802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Family of Small Molecules that Enhance the Intracellular Delivery and Pharmacological Effectiveness of Antisense and Splice Switching Oligonucleotides.
    Wang L; Ariyarathna Y; Ming X; Yang B; James LI; Kreda SM; Porter M; Janzen W; Juliano RL
    ACS Chem Biol; 2017 Aug; 12(8):1999-2007. PubMed ID: 28703575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides.
    Hemphill J; Liu Q; Uprety R; Samanta S; Tsang M; Juliano RL; Deiters A
    J Am Chem Soc; 2015 Mar; 137(10):3656-62. PubMed ID: 25734836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides.
    Yang B; Ming X; Cao C; Laing B; Yuan A; Porter MA; Hull-Ryde EA; Maddry J; Suto M; Janzen WP; Juliano RL
    Nucleic Acids Res; 2015 Feb; 43(4):1987-96. PubMed ID: 25662226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions.
    Cheng MS; Su MX; Wang MX; Sun MZ; Ou TM
    Methods; 2019 Sep; 167():124-133. PubMed ID: 31185274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting RNA in mammalian systems with small molecules.
    Donlic A; Hargrove AE
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1477. PubMed ID: 29726113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods to enable the design of bioactive small molecules targeting RNA.
    Disney MD; Yildirim I; Childs-Disney JL
    Org Biomol Chem; 2014 Feb; 12(7):1029-39. PubMed ID: 24357181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting.
    Matsumoto S; Caliskan N; Rodnina MV; Murata A; Nakatani K
    Nucleic Acids Res; 2018 Sep; 46(16):8079-8089. PubMed ID: 30085309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.
    Costales MG; Rzuczek SG; Disney MD
    Bioorg Med Chem Lett; 2016 Jun; 26(11):2605-9. PubMed ID: 27117425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR characterization of RNA small molecule interactions.
    Thompson RD; Baisden JT; Zhang Q
    Methods; 2019 Sep; 167():66-77. PubMed ID: 31128236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to identify and characterize RNA-targeting small molecules.
    Methods; 2019 Sep; 167():1-2. PubMed ID: 31381979
    [No Abstract]   [Full Text] [Related]  

  • 15. Small molecule alteration of RNA sequence in cells and animals.
    Guan L; Luo Y; Ja WW; Disney MD
    Bioorg Med Chem Lett; 2018 Sep; 28(16):2794-2796. PubMed ID: 29079470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA modulation, repair and remodeling by splice switching oligonucleotides.
    Kole R; Williams T; Cohen L
    Acta Biochim Pol; 2004; 51(2):373-8. PubMed ID: 15218534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of telomerase activity by splice-switching oligonucleotides targeting the mRNA of the telomerase catalytic subunit affects proliferation of human CD4
    Zhdanov DD; Plyasova AA; Gladilina YA; Pokrovsky VS; Grishin DV; Grachev VA; Orlova VS; Pokrovskaya MV; Alexandrova SS; Lobaeva TA; Sokolov NN
    Biochem Biophys Res Commun; 2019 Feb; 509(3):790-796. PubMed ID: 30612734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells.
    Dean JM; DeLong RK
    Methods Mol Biol; 2015; 1297():187-96. PubMed ID: 25896004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.
    Angelbello AJ; González ÀL; Rzuczek SG; Disney MD
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5792-5796. PubMed ID: 27839685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense Oligonucleotides for Splice Modulation: Assessing Splice Switching Efficacy.
    Rocha CSJ
    Methods Mol Biol; 2019; 2036():73-90. PubMed ID: 31410791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.