BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31203169)

  • 1. Tensor decomposition of hyperspectral images to study autofluorescence in age-related macular degeneration.
    Dey N; Hong S; Ach T; Koutalos Y; Curcio CA; Smith RT; Gerig G
    Med Image Anal; 2019 Aug; 56():96-109. PubMed ID: 31203169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex Vivo Hyperspectral Autofluorescence Imaging and Localization of Fluorophores in Human Eyes with Age-Related Macular Degeneration.
    Mohammed T; Tong Y; Agee J; Challa N; Heintzmann R; Hammer M; Curcio CA; Ach T; Ablonczy Z; Smith RT
    Vision (Basel); 2018 Sep; 2(4):. PubMed ID: 31735901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION.
    Tong Y; Ben Ami T; Hong S; Heintzmann R; Gerig G; Ablonczy Z; Curcio CA; Ach T; Smith RT
    Retina; 2016 Dec; 36 Suppl 1(Suppl 1):S127-S136. PubMed ID: 28005671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging.
    Deal J; Mayes S; Browning C; Hill S; Rider P; Boudreaux C; Rich TC; Leavesley SJ
    J Biomed Opt; 2018 Dec; 24(2):1-11. PubMed ID: 30592190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demystifying autofluorescence with excitation-scanning hyperspectral imaging.
    Deal J; Harris B; Martin W; Lall M; Lopez C; Rider P; Boudreaux C; Rich T; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2018; 10497():. PubMed ID: 34092890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration.
    Tong Y; Ach T; Curcio CA; Smith RT
    Ann Eye Sci; 2021 Mar; 6():. PubMed ID: 33791592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous decomposition of multiple hyperspectral data sets: signal recovery of unknown fluorophores in the retinal pigment epithelium.
    Smith RT; Post R; Johri A; Lee MD; Ablonczy Z; Curcio CA; Ach T; Sajda P
    Biomed Opt Express; 2014 Dec; 5(12):4171-85. PubMed ID: 25574430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green emission fluorophores in eyes with atrophic age-related macular degeneration: a colour fundus autofluorescence pilot study.
    Borrelli E; Lei J; Balasubramanian S; Uji A; Cozzi M; Sarao V; Lanzetta P; Staurenghi G; Sadda SR
    Br J Ophthalmol; 2018 Jun; 102(6):827-832. PubMed ID: 28972030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo snapshot hyperspectral image analysis of age-related macular degeneration.
    Lee N; Wielaard J; Fawzi AA; Sajda P; Laine AF; Martin G; Humayun MS; Smith RT
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5363-6. PubMed ID: 21096261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral profiling of autofluorescence associated with lipofuscin, Bruch's Membrane, and sub-RPE deposits in normal and AMD eyes.
    Marmorstein AD; Marmorstein LY; Sakaguchi H; Hollyfield JG
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2435-41. PubMed ID: 12091448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Peripheral Retinal Changes on Ultra-Widefield Fundus Autofluorescence Images of Patients with Age-Related Macular Degeneration.
    Küçükiba K; Erol N; Bilgin M
    Turk J Ophthalmol; 2020 Mar; 50(1):6-14. PubMed ID: 32166942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundus autofluorescence and age-related macular degeneration.
    Spaide RF
    Ophthalmology; 2003 Feb; 110(2):392-9. PubMed ID: 12578786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system.
    Favreau PF; Deal JA; Weber DS; Rich TC; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9711():. PubMed ID: 34131358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex Vivo Confocal Spectroscopy of Autofluorescence in Age-Related Macular Degeneration.
    Kaluzny J; Purta P; Poskin Z; Rogers JD; Fawzi AA
    PLoS One; 2016; 11(9):e0162869. PubMed ID: 27631087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-widefield fundus autofluorescence in age-related macular degeneration.
    Guduru A; Fleischman D; Shin S; Zeng D; Baldwin JB; Houghton OM; Say EA
    PLoS One; 2017; 12(6):e0177207. PubMed ID: 28570556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning.
    McRae TD; Oleksyn D; Miller J; Gao YR
    PLoS One; 2019; 14(12):e0225410. PubMed ID: 31790435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging.
    Ben Ami T; Tong Y; Bhuiyan A; Huisingh C; Ablonczy Z; Ach T; Curcio CA; Smith RT
    Transl Vis Sci Technol; 2016 May; 5(3):5. PubMed ID: 27226929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Minnesota Grading System using fundus autofluorescence of eye bank eyes: a correlation to age-related macular degeneration (an AOS thesis).
    Olsen TW
    Trans Am Ophthalmol Soc; 2008; 106():383-401. PubMed ID: 19277247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundus autofluorescence imaging in age-related macular degeneration.
    Batıoğlu F; Demirel S; Özmert E
    Semin Ophthalmol; 2015 Jan; 30(1):65-73. PubMed ID: 23952079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration.
    Dysli C; Fink R; Wolf S; Zinkernagel MS
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4856-4862. PubMed ID: 28973332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.