These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31203402)

  • 1. Short-interval intracortical inhibition to the biceps brachii is present during arm cycling but is not different than a position- and intensity-matched tonic contraction.
    Alcock LR; Spence AJ; Lockyer EJ; Button DC; Power KE
    Exp Brain Res; 2019 Sep; 237(9):2145-2154. PubMed ID: 31203402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement.
    Forman DA; Philpott DT; Button DC; Power KE
    Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation.
    Kojima S; Onishi H; Sugawara K; Kirimoto H; Suzuki M; Tamaki H
    BMC Neurosci; 2013 Apr; 14():43. PubMed ID: 23547559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal excitability, assessed through stimulus response curves, is phase-, task-, and muscle-dependent during arm cycling.
    Forman DA; Monks M; Power KE
    Neurosci Lett; 2019 Jan; 692():100-106. PubMed ID: 30399398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhemispheric inhibition is different during arm cycling than a position- and intensity-matched tonic contraction.
    Compton CT; Lockyer EJ; Benson RJ; Power KE
    Exp Brain Res; 2022 Sep; 240(9):2425-2434. PubMed ID: 35852566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the effects of muscle contraction and conditioning stimulus intensity on short-interval intracortical inhibition.
    Hendy AM; Ekblom MM; Latella C; Teo WP
    Eur J Neurosci; 2019 Oct; 50(7):3133-3140. PubMed ID: 31199534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex.
    Ortu E; Deriu F; Suppa A; Tolu E; Rothwell JC
    J Physiol; 2008 Nov; 586(21):5147-59. PubMed ID: 18787036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two phases of short-interval intracortical inhibition.
    Roshan L; Paradiso GO; Chen R
    Exp Brain Res; 2003 Aug; 151(3):330-7. PubMed ID: 12802553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Premovement Changes in Corticospinal Excitability of the Biceps Brachii are Not Different Between Arm Cycling and an Intensity-Matched Tonic Contraction.
    Copithorne DB; Forman DA; Power KE
    Motor Control; 2015 Jul; 19(3):223-41. PubMed ID: 25387357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of experimental pain on short-interval intracortical inhibition with multi-locus transcranial magnetic stimulation.
    Salo KS; Vaalto SMI; Koponen LM; Nieminen JO; Ilmoniemi RJ
    Exp Brain Res; 2019 Jun; 237(6):1503-1510. PubMed ID: 30919012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of short- and long-interval intracortical inhibition with increasing motor evoked potential amplitude in a human hand muscle.
    Opie GM; Semmler JG
    Clin Neurophysiol; 2014 Jul; 125(7):1440-50. PubMed ID: 24345316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-interval intracortical inhibition in knee extensors during locomotor cycling.
    Sidhu SK; Cresswell AG; Carroll TJ
    Acta Physiol (Oxf); 2013 Jan; 207(1):194-201. PubMed ID: 23025802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimal protocol for measurement of corticospinal excitability, short intracortical inhibition and intracortical facilitation in the rectus femoris.
    Brownstein CG; Ansdell P; Škarabot J; Howatson G; Goodall S; Thomas K
    J Neurol Sci; 2018 Nov; 394():45-56. PubMed ID: 30216757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF).
    Peurala SH; Müller-Dahlhaus JF; Arai N; Ziemann U
    Clin Neurophysiol; 2008 Oct; 119(10):2291-7. PubMed ID: 18723394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states.
    Garry MI; Thomson RH
    Exp Brain Res; 2009 Feb; 193(2):267-74. PubMed ID: 18974984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group.
    Krishnan C
    Restor Neurol Neurosci; 2019; 37(4):363-374. PubMed ID: 31306142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study.
    Tugin S; Souza VH; Nazarova MA; Novikov PA; Tervo AE; Nieminen JO; Lioumis P; Ziemann U; Nikulin VV; Ilmoniemi RJ
    PLoS One; 2021; 16(9):e0257554. PubMed ID: 34550997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.