These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 31203445)
1. Assessing the role of SWIR band in detecting agricultural crop stress: a case study of Raichur district, Karnataka, India. Swathandran S; Aslam MAM Environ Monit Assess; 2019 Jun; 191(7):442. PubMed ID: 31203445 [TBL] [Abstract][Full Text] [Related]
2. Food productivity trend analysis of Raichur district for the management of agricultural drought. Swathandran S; Aslam MA Environ Monit Assess; 2016 Jan; 188(1):63. PubMed ID: 26718944 [TBL] [Abstract][Full Text] [Related]
3. [Evaluating the utility of MODIS vegetation index for monitoring agricultural drought]. Li HP; Zhang SQ; Gao ZQ; Sun Y Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):756-61. PubMed ID: 23705448 [TBL] [Abstract][Full Text] [Related]
4. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Patel NR; Parida BR; Venus V; Saha SK; Dadhwal VK Environ Monit Assess; 2012 Dec; 184(12):7153-63. PubMed ID: 22200944 [TBL] [Abstract][Full Text] [Related]
5. [Monitoring of farmland drought based on LST-LAI spectral feature space]. Sui XX; Qin QM; Dong H; Wang JL; Meng QY; Liu MC Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):201-5. PubMed ID: 23586256 [TBL] [Abstract][Full Text] [Related]
6. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations. Sehgal VK; Dhakar R Environ Monit Assess; 2016 Mar; 188(3):197. PubMed ID: 26922747 [TBL] [Abstract][Full Text] [Related]
7. Analysis of vegetation dynamics, drought in relation with climate over South Asia from 1990 to 2011. Ali S; Henchiri M; Yao F; Zhang J Environ Sci Pollut Res Int; 2019 Apr; 26(11):11470-11481. PubMed ID: 30806929 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction and application of the temperature-vegetation-precipitation drought index in mainland China based on remote sensing datasets and a spatial distance model. Wei W; Zhang H; Ma L; Wang X; Guo Z; Xie B; Zhou J; Wang J J Environ Manage; 2022 Dec; 323():116208. PubMed ID: 36261977 [TBL] [Abstract][Full Text] [Related]
9. [An improved method and its application for agricultural drought monitoring based on remote sensing]. Zheng YF; Cheng JX; Wu RJ; Guan FL; Yao SR Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2608-18. PubMed ID: 24417121 [TBL] [Abstract][Full Text] [Related]
10. Early-season agricultural drought: detection, assessment and monitoring using Shortwave Angle and Slope Index (SASI) data. Das PK; Murthy SC; Seshasai MV Environ Monit Assess; 2013 Dec; 185(12):9889-902. PubMed ID: 23793539 [TBL] [Abstract][Full Text] [Related]
11. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India. Murthy CS; Yadav M; Mohammed Ahamed J; Laxman B; Prawasi R; Sesha Sai MV; Hooda RS Environ Monit Assess; 2015 Mar; 187(3):140. PubMed ID: 25716524 [TBL] [Abstract][Full Text] [Related]
12. Characterization of drought monitoring events through MODIS- and TRMM-based DSI and TVDI over South Asia during 2001-2017. Ali S; Tong D; Xu ZT; Henchiri M; Wilson K; Siqi S; Zhang J Environ Sci Pollut Res Int; 2019 Nov; 26(32):33568-33581. PubMed ID: 31583522 [TBL] [Abstract][Full Text] [Related]
13. Monitoring agricultural drought in Peshawar Valley, Pakistan using long -term satellite and meteorological data. Javed T; Bhattarai N; Acharya BS; Zhang J Environ Sci Pollut Res Int; 2024 Jan; 31(3):3598-3613. PubMed ID: 38085478 [TBL] [Abstract][Full Text] [Related]
14. Agricultural drought early warning from geostationary meteorological satellites: concept and demonstration over semi-arid tract in India. Vyas SS; Bhattacharya BK Environ Monit Assess; 2020 Apr; 192(5):311. PubMed ID: 32328808 [TBL] [Abstract][Full Text] [Related]
15. Droughts in India from 1981 to 2013 and Implications to Wheat Production. Zhang X; Obringer R; Wei C; Chen N; Niyogi D Sci Rep; 2017 Mar; 7():44552. PubMed ID: 28294189 [TBL] [Abstract][Full Text] [Related]
16. Study loss of vegetative cover and increased land surface temperature through remote sensing strategies under the inter-annual climate variability in Jinhua-Quzhou basin, China. Ali S; Basit A; Ali S; Umair M; Makanda TA; Shaik MR; Khan M Environ Sci Pollut Res Int; 2024 Apr; 31(20):28950-28966. PubMed ID: 38564132 [TBL] [Abstract][Full Text] [Related]
17. Probability assessment of vegetation vulnerability to drought based on remote sensing data. Alamdarloo EH; Manesh MB; Khosravi H Environ Monit Assess; 2018 Nov; 190(12):702. PubMed ID: 30406494 [TBL] [Abstract][Full Text] [Related]
18. [Impact of Vegetation Structure on Drought Indices Based on MODIS Spectrum]. Du LT; Tian QJ; Wang L Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):982-6. PubMed ID: 26197587 [TBL] [Abstract][Full Text] [Related]
19. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.]. Liu EH; Zhou GS; Zhou L Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775 [TBL] [Abstract][Full Text] [Related]
20. Remotely sensed vegetation indices for crop nutrition mapping. Sharifi A J Sci Food Agric; 2020 Nov; 100(14):5191-5196. PubMed ID: 32530048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]