BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31203607)

  • 1. Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.
    Maisch M; Lueder U; Laufer K; Scholze C; Kappler A; Schmidt C
    Environ Sci Technol; 2019 Jul; 53(14):8197-8204. PubMed ID: 31203607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks.
    Laufer K; Nordhoff M; Halama M; Martinez RE; Obst M; Nowak M; Stryhanyuk H; Richnow HH; Kappler A
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile
    Zhou N; Luther GW; Chan CS
    Environ Sci Technol; 2021 Jul; 55(13):9362-9371. PubMed ID: 34110796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment.
    Laufer K; Nordhoff M; Røy H; Schmidt C; Behrens S; Jørgensen BB; Kappler A
    Appl Environ Microbiol; 2015 Dec; 82(5):1433-1447. PubMed ID: 26682861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil.
    Chen Y; Li X; Liu T; Li F; Sun W; Young LY; Huang W
    Sci Total Environ; 2022 Dec; 851(Pt 1):158068. PubMed ID: 35987227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil.
    Tong H; Chen M; Lv Y; Liu C; Zheng C; Xia Y
    Environ Geochem Health; 2021 Mar; 43(3):1305-1317. PubMed ID: 32975698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity.
    Chen N; Geng M; Huang D; Tan M; Li Z; Liu G; Zhu C; Fang G; Zhou D
    J Hazard Mater; 2022 Jul; 434():128861. PubMed ID: 35405609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Year
    Mitsunobu S; Ohashi Y; Makita H; Suzuki Y; Nozaki T; Ohigashi T; Ina T; Takaki Y
    Appl Environ Microbiol; 2021 Nov; 87(23):e0097721. PubMed ID: 34550782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2.
    Park U; Dempsey BA
    Environ Sci Technol; 2005 Sep; 39(17):6494-500. PubMed ID: 16190204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.
    Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS
    Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction.
    Chen R; Liu H; Tong M; Zhao L; Zhang P; Liu D; Yuan S
    Sci Total Environ; 2018 Oct; 639():1007-1014. PubMed ID: 29929270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of microaerophilic Fe(II)-oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction.
    Lueder U; Maisch M; Jørgensen BB; Druschel G; Schmidt C; Kappler A
    Geobiology; 2022 May; 20(3):421-434. PubMed ID: 35014744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer
    Zhou N; Kupper RJ; Catalano JG; Thompson A; Chan CS
    Environ Sci Technol; 2022 Dec; 56(23):17443-17453. PubMed ID: 36417801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations.
    Chan CS; Emerson D; Luther GW
    Geobiology; 2016 Sep; 14(5):509-28. PubMed ID: 27392195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.