These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. Yan Y; Sitaula P; Odom SA; Vaid TP ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry. Cabrera PJ; Yang X; Suttil JA; Brooner RE; Thompson LT; Sanford MS Inorg Chem; 2015 Nov; 54(21):10214-23. PubMed ID: 26468668 [TBL] [Abstract][Full Text] [Related]
7. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review. Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523 [TBL] [Abstract][Full Text] [Related]
8. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
9. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery. Duan W; Vemuri RS; Hu D; Yang Z; Wei X J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515 [TBL] [Abstract][Full Text] [Related]
10. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
12. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070 [TBL] [Abstract][Full Text] [Related]
13. MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes. Kim S; Jinich A; Aspuru-Guzik A J Chem Inf Model; 2017 Apr; 57(4):657-668. PubMed ID: 28328209 [TBL] [Abstract][Full Text] [Related]
14. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Yan Y; Robinson SG; Sigman MS; Sanford MS J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480 [TBL] [Abstract][Full Text] [Related]
15. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
16. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. Hwang B; Park MS; Kim K ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116 [TBL] [Abstract][Full Text] [Related]
17. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures. Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664 [TBL] [Abstract][Full Text] [Related]
18. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries. Park JH; Park JJ; Park OO; Yang JH ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification. Geysens P; Evers J; Dehaen W; Fransaer J; Binnemans K RSC Adv; 2020 Oct; 10(65):39601-39610. PubMed ID: 35515364 [TBL] [Abstract][Full Text] [Related]