These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31203632)

  • 1. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires.
    Dubrovskii VG; Hijazi H
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.
    Gutsche C; Lysov A; Regolin I; Blekker K; Prost W; Tegude FJ
    Nanoscale Res Lett; 2011 Dec; 6(1):65. PubMed ID: 27502686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of long III-As NWs by hydride vapor phase epitaxy.
    Gil E; Andre Y
    Nanotechnology; 2021 Apr; 32(16):162002. PubMed ID: 33434903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.
    Dong Z; André Y; Dubrovskii VG; Bougerol C; Leroux C; Ramdani MR; Monier G; Trassoudaine A; Castelluci D; Gil E
    Nanotechnology; 2017 Mar; 28(12):125602. PubMed ID: 28140362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires.
    Rizzo Piton M; Koivusalo E; Hakkarainen T; Galeti HVA; De Giovanni Rodrigues A; Talmila S; Souto S; Lupo D; Galvão Gobato Y; Guina M
    Nanotechnology; 2019 Aug; 30(33):335709. PubMed ID: 30995612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation Mechanism of Twinning Superlattices in Doped GaAs Nanowires.
    Isik Goktas N; Sokolovskii A; Dubrovskii VG; LaPierre RR
    Nano Lett; 2020 May; 20(5):3344-3351. PubMed ID: 32239956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-fold Symmetric Doping Mechanism in GaAs Nanowires.
    Dastjerdi MHT; Fiordaliso EM; Leshchenko ED; Akhtari-Zavareh A; Kasama T; Aagesen M; Dubrovskii VG; LaPierre RR
    Nano Lett; 2017 Oct; 17(10):5875-5882. PubMed ID: 28903563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium.
    Kim H; Ren D; Farrell AC; Huffaker DL
    Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.
    Ihn SG; Song JI; Kim TW; Leem DS; Lee T; Lee SG; Koh EK; Song K
    Nano Lett; 2007 Jan; 7(1):39-44. PubMed ID: 17212437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuating potentials in GaAs:Si nanowires: critical reduction of the influence of polytypism on the electronic structure.
    Ben Sedrine N; Ribeiro-Andrade R; Gustafsson A; Soares MR; Bourgard J; Teixeira JP; Salomé PMP; Correia MR; Moreira MVB; De Oliveira AG; González JC; Leitão JP
    Nanoscale; 2018 Feb; 10(8):3697-3708. PubMed ID: 29388656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers.
    Huang H; Ren X; Ye X; Guo J; Wang Q; Yang Y; Cai S; Huang Y
    Nano Lett; 2010 Jan; 10(1):64-8. PubMed ID: 20000817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.
    Yu X; Wang H; Pan D; Zhao J; Misuraca J; von Molnár S; Xiong P
    Nano Lett; 2013 Apr; 13(4):1572-7. PubMed ID: 23517546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.
    Plissard S; Larrieu G; Wallart X; Caroff P
    Nanotechnology; 2011 Jul; 22(27):275602. PubMed ID: 21597162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.
    Boland JL; Conesa-Boj S; Parkinson P; Tütüncüoglu G; Matteini F; Rüffer D; Casadei A; Amaduzzi F; Jabeen F; Davies CL; Joyce HJ; Herz LM; Fontcuberta i Morral A; Johnston MB
    Nano Lett; 2015 Feb; 15(2):1336-42. PubMed ID: 25602841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.