These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31204229)

  • 1. Opportunities and challenges for the development of covalent chemical immunomodulators.
    Backus KM; Cao J; Maddox SM
    Bioorg Med Chem; 2019 Aug; 27(15):3421-3439. PubMed ID: 31204229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site.
    Kim HR; Tagirasa R; Yoo E
    J Med Chem; 2021 May; 64(9):5291-5322. PubMed ID: 33904753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatases as small-molecule targets: inhibiting the endogenous inhibitors of kinases.
    Schmid AC; Woscholski R
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):348-9. PubMed ID: 15046606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic challenges of kinase and phosphatase inhibition and use in anti-diabetic strategy.
    Bridges AJ
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):343-5. PubMed ID: 15787602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical microarrays: a new tool for discovery enzyme inhibitors.
    Liang S; Xu W; Horiuchi KY; Wang Y; Ma H
    Methods Mol Biol; 2009; 572():149-60. PubMed ID: 20694690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetry of chemical similarity.
    Chen X; Brown FK
    ChemMedChem; 2007 Feb; 2(2):180-2. PubMed ID: 17177230
    [No Abstract]   [Full Text] [Related]  

  • 7. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB.
    Soellner MB; Rawls KA; Grundner C; Alber T; Ellman JA
    J Am Chem Soc; 2007 Aug; 129(31):9613-5. PubMed ID: 17636914
    [No Abstract]   [Full Text] [Related]  

  • 8. From covalent glycosidase inhibitors to activity-based glycosidase probes.
    Willems LI; Jiang J; Li KY; Witte MD; Kallemeijn WW; Beenakker TJ; Schröder SP; Aerts JM; van der Marel GA; Codée JD; Overkleeft HS
    Chemistry; 2014 Aug; 20(35):10864-72. PubMed ID: 25100671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The road less travelled: taming phosphatases.
    Widlanski TS; Myers JK; Stec B; Holtz KM; Kantrowitz ER
    Chem Biol; 1997 Jul; 4(7):489-92. PubMed ID: 9263635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparameter Kinetic Analysis for Covalent Fragment Optimization by Using Quantitative Irreversible Tethering (qIT).
    Craven GB; Affron DP; Kösel T; Wong TLM; Jukes ZH; Liu CT; Morgan RML; Armstrong A; Mann DJ
    Chembiochem; 2020 Dec; 21(23):3417-3422. PubMed ID: 32659037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in covalent kinase inhibitors.
    Abdeldayem A; Raouf YS; Constantinescu SN; Moriggl R; Gunning PT
    Chem Soc Rev; 2020 May; 49(9):2617-2687. PubMed ID: 32227030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potent and selective MTH1 inhibitors.
    Petrocchi A; Leo E; Reyna NJ; Hamilton MM; Shi X; Parker CA; Mseeh F; Bardenhagen JP; Leonard P; Cross JB; Huang S; Jiang Y; Cardozo M; Draetta G; Marszalek JR; Toniatti C; Jones P; Lewis RT
    Bioorg Med Chem Lett; 2016 Mar; 26(6):1503-1507. PubMed ID: 26898335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments.
    Petri L; Ábrányi-Balogh P; Tímea I; Pálfy G; Perczel A; Knez D; Hrast M; Gobec M; Sosič I; Nyíri K; Vértessy BG; Jänsch N; Desczyk C; Meyer-Almes FJ; Ogris I; Golič Grdadolnik S; Iacovino LG; Binda C; Gobec S; Keserű GM
    Chembiochem; 2021 Feb; 22(4):743-753. PubMed ID: 33030752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases.
    Subramanian T; Ren H; Subramanian KL; Sunkara M; Onono FO; Morris AJ; Spielmann HP
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4414-4417. PubMed ID: 25150376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of phosphate-metabolizing enzymes by oxovanadium(V) complexes.
    Stankiewicz PJ; Tracey AS; Crans DC
    Met Ions Biol Syst; 1995; 31():287-324. PubMed ID: 8564811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Reactive are Druggable Cysteines in Protein Kinases?
    Awoonor-Williams E; Rowley CN
    J Chem Inf Model; 2018 Sep; 58(9):1935-1946. PubMed ID: 30118220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multiplexed NMR-Reporter Approach to Measure Cellular Kinase and Phosphatase Activities in Real-Time.
    Thongwichian R; Kosten J; Benary U; Rose HM; Stuiver M; Theillet FX; Dose A; Koch B; Yokoyama H; Schwarzer D; Wolf J; Selenko P
    J Am Chem Soc; 2015 May; 137(20):6468-71. PubMed ID: 25963544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of 6-substituted cyclohexane-1,2,4-triol derivatives: mechanistic probes for the inositol monophosphatase reaction.
    Schulz J; Wilkie J; Beaton MW; Miller DJ; Gani D
    Biochem Soc Trans; 1998 Aug; 26(3):315-22. PubMed ID: 9765871
    [No Abstract]   [Full Text] [Related]  

  • 19. Separate bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: the role of the C-terminal tail in modulating enzyme activity.
    Li L; Ling S; Wu Cl; Yao W; Xu G
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):751-6. PubMed ID: 9396716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancements in chemical biology targeting the kinases and phosphatases of RNA polymerase II-mediated transcription.
    Kim W; LeBlanc B; Matthews WL; Zhang ZY; Zhang Y
    Curr Opin Chem Biol; 2021 Aug; 63():68-77. PubMed ID: 33714893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.