These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31204318)

  • 1. Effect of Pseudocolor Filter in Micro-computed Tomography Images for Detection of Proximal and Occlusal Caries Lesions in Primary Molars.
    Freitas SA; Panzarella FK; Karia RH; Cavaletti MR; Junqueira JLC; Oliveira LB
    J Contemp Dent Pract; 2019 Mar; 20(3):279-284. PubMed ID: 31204318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of MicroCT for in vitro detection of proximal carious lesions in primary molars.
    Soviero VM; Leal SC; Silva RC; Azevedo RB
    J Dent; 2012 Jan; 40(1):35-40. PubMed ID: 21930181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of micro-computed tomography to detect and classify proximal caries lesions
    Rovaris K; Ferreira LM; Sousa TO; Peroni LV; Freitas DQ; Wenzel A; Haiter-Neto F
    Dent Res J (Isfahan); 2018; 15(2):123-129. PubMed ID: 29576776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of micro-computed tomography for occlusal caries detection: an in vitro study.
    Özkan G; Kanli A; Başeren NM; Arslan U; Tatar İ
    Braz Oral Res; 2015; 29(1):S1806-83242015000100309. PubMed ID: 26892360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of visual and image-based ICDAS criteria compared with a micro-CT gold standard for caries detection on occlusal surfaces.
    Carvalho RN; Letieri ADS; Vieira TI; Santos TMPD; Lopes RT; Neves AA; Pomarico L
    Braz Oral Res; 2018 Jul; 32():e60. PubMed ID: 29995065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic performance of the visual caries classification system ICDAS II versus radiography and micro-computed tomography for proximal caries detection: an in vitro study.
    Mitropoulos P; Rahiotis C; Stamatakis H; Kakaboura A
    J Dent; 2010 Nov; 38(11):859-67. PubMed ID: 20654681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OCT assessment of non-cavitated occlusal carious lesions by variation of incidence angle of probe light and refractive index matching.
    Park KJ; Haak R; Ziebolz D; Krause F; Schneider H
    J Dent; 2017 Jul; 62():31-35. PubMed ID: 28479506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the ICDAS system and two fluorescence-based intraoral devices for examination of occlusal surfaces.
    Theocharopoulou A; Lagerweij MD; van Strijp AJ
    Eur J Paediatr Dent; 2015 Mar; 16(1):51-5. PubMed ID: 25793954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diagnostic performance of the Java-based software colorization tool in the diagnosis of dental caries: an in vitro study.
    Tercanli Alkis H; Satir S; Kirici D; Barutcugil C
    Quintessence Int; 2023 Apr; 54(4):266-273. PubMed ID: 36477726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transillumination and HDR Imaging for Proximal Caries Detection.
    Lederer A; Kunzelmann KH; Hickel R; Litzenburger F
    J Dent Res; 2018 Jul; 97(7):844-849. PubMed ID: 29481761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of examiner's clinical experience in detecting occlusal caries lesions in primary teeth.
    Bengtson AL; Gomes AC; Mendes FM; Cichello LR; Bengtson NG; Pinheiro SL
    Pediatr Dent; 2005; 27(3):238-43. PubMed ID: 16173230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical performance of fluorescence-based methods for detection of occlusal caries lesions in primary teeth.
    Pontes LRA; Novaes TF; Moro BLP; Braga MM; Mendes FM
    Braz Oral Res; 2017 Nov; 31():e91. PubMed ID: 29116301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro visual and visible light transillumination methods for detection of natural non-cavitated approximal caries.
    Abogazalah N; Eckert GJ; Ando M
    Clin Oral Investig; 2019 Mar; 23(3):1287-1294. PubMed ID: 29987636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occlusal caries detection in primary teeth: a comparison of DIAGNOdent with conventional methods.
    Attrill DC; Ashley PF
    Br Dent J; 2001 Apr; 190(8):440-3. PubMed ID: 11352392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of light-emitting diode device in detecting occlusal caries in the primary molars.
    Diniz MB; Campos PH; Wilde S; Cordeiro RCL; Zandona AGF
    Lasers Med Sci; 2019 Aug; 34(6):1235-1241. PubMed ID: 30673922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries.
    Young SM; Lee JT; Hodges RJ; Chang TL; Elashoff DA; White SC
    Dentomaxillofac Radiol; 2009 Oct; 38(7):445-51. PubMed ID: 19767514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro validation of near-infrared reflection for proximal caries detection.
    Lederer A; Kunzelmann KH; Heck K; Hickel R; Litzenburger F
    Eur J Oral Sci; 2019 Dec; 127(6):515-522. PubMed ID: 31774207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries.
    Abogazalah N; Eckert GJ; Ando M
    J Dent; 2017 Aug; 63():44-50. PubMed ID: 28559050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of scoring caries and primary molar hypomineralization (DMH) on intraoral photographs.
    Elfrink ME; Veerkamp JS; Aartman IH; Moll HA; Ten Cate JM
    Eur Arch Paediatr Dent; 2009 Nov; 10 Suppl 1():5-10. PubMed ID: 19863892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occlusal caries depth measurements obtained by five different imaging modalities.
    Kamburoğlu K; Kurt H; Kolsuz E; Öztaş B; Tatar I; Çelik HH
    J Digit Imaging; 2011 Oct; 24(5):804-13. PubMed ID: 21116675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.