These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31204419)

  • 1. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting.
    Fernandez-Cuesta I; West MM; Montinaro E; Schwartzberg A; Cabrini S
    Lab Chip; 2019 Jul; 19(14):2394-2403. PubMed ID: 31204419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bowtie plasmonic quantum cascade laser antenna.
    Yu N; Cubukcu E; Diehl L; Bour D; Corzine S; Zhu J; Höfler G; Crozier KB; Capasso F
    Opt Express; 2007 Oct; 15(20):13272-81. PubMed ID: 19550597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Counting of Nucleotide by Electrophoresis with Nanochannel-Integrated Nano-Gap Devices.
    Ohshiro T; Komoto Y; Taniguchi M
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations.
    Punj D; Mivelle M; Moparthi SB; van Zanten TS; Rigneault H; van Hulst NF; García-Parajó MF; Wenger J
    Nat Nanotechnol; 2013 Jul; 8(7):512-6. PubMed ID: 23748196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanochannel chromatography and photothermal optical diffraction: Femtoliter sample separation and label-free zeptomole detection.
    Tsuyama Y; Morikawa K; Mawatari K
    J Chromatogr A; 2020 Aug; 1624():461265. PubMed ID: 32540055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas.
    Syrenova S; Wadell C; Langhammer C
    Nano Lett; 2014 May; 14(5):2655-63. PubMed ID: 24697350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna.
    Dey D; Kohoutek J; Gelfand RM; Bonakdar A; Mohseni H
    Opt Lett; 2010 Aug; 35(16):2783-5. PubMed ID: 20717456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting nanowire single-photon detectors integrated with optical nano-antennae.
    Hu X; Dauler EA; Molnar RJ; Berggren KK
    Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array.
    Cohn B; Engelman B; Goldner A; Chuntonov L
    J Phys Chem Lett; 2018 Aug; 9(16):4596-4601. PubMed ID: 30044640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of immunoassay's fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array.
    Zhou L; Ding F; Chen H; Ding W; Zhang W; Chou SY
    Anal Chem; 2012 May; 84(10):4489-95. PubMed ID: 22519422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Plasmonic Nanostructures for Enhanced Single-Molecule Detection Sensitivity.
    Herkert EK; Bermeo Alvaro DR; Recchia M; Langbein W; Borri P; Garcia-Parajo MF
    ACS Nano; 2023 May; 17(9):8453-8464. PubMed ID: 37011057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients.
    Dongare PD; Zhao Y; Renard D; Yang J; Neumann O; Metz J; Yuan L; Alabastri A; Nordlander P; Halas NJ
    ACS Nano; 2021 May; 15(5):8761-8769. PubMed ID: 33900744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.