These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 31204427)
1. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427 [TBL] [Abstract][Full Text] [Related]
2. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
3. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
4. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information. Yang X; Zhao L; Wei F; Li J BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199 [TBL] [Abstract][Full Text] [Related]
5. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set. Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818 [TBL] [Abstract][Full Text] [Related]
6. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules. Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214 [TBL] [Abstract][Full Text] [Related]
7. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Zhang H; Lundegaard C; Nielsen M Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943 [TBL] [Abstract][Full Text] [Related]
8. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism. Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412 [TBL] [Abstract][Full Text] [Related]
10. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system. Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. Lin HH; Zhang GL; Tongchusak S; Reinherz EL; Brusic V BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S22. PubMed ID: 19091022 [TBL] [Abstract][Full Text] [Related]
12. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Karosiene E; Lundegaard C; Lund O; Nielsen M Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319 [TBL] [Abstract][Full Text] [Related]
13. Structural prediction of peptides binding to MHC class I molecules. Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245 [TBL] [Abstract][Full Text] [Related]
14. Improving the prediction of HLA class I-binding peptides using a supertype-based method. Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661 [TBL] [Abstract][Full Text] [Related]
15. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
16. Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Mei S; Li F; Xiang D; Ayala R; Faridi P; Webb GI; Illing PT; Rossjohn J; Akutsu T; Croft NP; Purcell AW; Song J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454737 [TBL] [Abstract][Full Text] [Related]
17. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. Bordner AJ; Mittelmann HD BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497 [TBL] [Abstract][Full Text] [Related]
18. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]
19. Automated benchmarking of peptide-MHC class I binding predictions. Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196 [TBL] [Abstract][Full Text] [Related]
20. Integrated modeling of the major events in the MHC class I antigen processing pathway. Dönnes P; Kohlbacher O Protein Sci; 2005 Aug; 14(8):2132-40. PubMed ID: 15987883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]