These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31204733)

  • 1. Understanding and controlling the metal-directed assembly of terpyridine-functionalized coiled-coil peptides.
    Scheib KA; Tavenor NA; Lawless MJ; Saxena S; Horne WS
    Chem Commun (Camb); 2019 Jul; 55(54):7752-7755. PubMed ID: 31204733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-metal ion, Ni(II) and Cu(II), binding alpha-helical coiled coil peptide.
    Tanaka T; Mizuno T; Fukui S; Hiroaki H; Oku J; Kanaori K; Tajima K; Shirakawa M
    J Am Chem Soc; 2004 Nov; 126(43):14023-8. PubMed ID: 15506765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Metal-Coordination Polymers, Nets, and Frameworks from Synthetic Coiled-Coil Peptides.
    Tavenor NA; Murnin MJ; Horne WS
    J Am Chem Soc; 2017 Feb; 139(6):2212-2215. PubMed ID: 28161945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded alpha-helical coiled-coil toward a prototype for a metalloenzyme.
    Kiyokawa T; Kanaori K; Tajima K; Koike M; Mizuno T; Oku JI; Tanaka T
    J Pept Res; 2004 Apr; 63(4):347-53. PubMed ID: 15102052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up.
    Hong J; Kharenko OA; Ogawa MY
    Inorg Chem; 2006 Dec; 45(25):9974-84. PubMed ID: 17140193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.
    Zaytsev DV; Morozov VA; Fan J; Zhu X; Mukherjee M; Ni S; Kennedy MA; Ogawa MY
    J Inorg Biochem; 2013 Feb; 119():1-9. PubMed ID: 23160144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the side chain length of Asp and Glu on coordination structure of Cu(2+) in a de novo designed protein.
    Shiga D; Nakane D; Inomata T; Masuda H; Oda M; Noda M; Uchiyama S; Fukui K; Takano Y; Nakamura H; Mizuno T; Tanaka T
    Biopolymers; 2009 Nov; 91(11):907-16. PubMed ID: 19598226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core.
    Mills JH; Sheffler W; Ener ME; Almhjell PJ; Oberdorfer G; Pereira JH; Parmeggiani F; Sankaran B; Zwart PH; Baker D
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15012-15017. PubMed ID: 27940918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic identification of different types of copper centers generated in synthetic four-helix bundle proteins.
    Schnepf R; Haehnel W; Wieghardt K; Hildebrandt P
    J Am Chem Soc; 2004 Nov; 126(44):14389-99. PubMed ID: 15521758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Methods Enzymol; 2016; 580():135-48. PubMed ID: 27586331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-inorganic array construction: design and synthesis of the building blocks.
    Bogdan ND; Matache M; Meier VM; Dobrotă C; Dumitru I; Roiban GD; Funeriu DP
    Chemistry; 2010 Feb; 16(7):2170-80. PubMed ID: 20063328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SwitCCh: Metal-Site Design for Controlling the Assembly of a Coiled-Coil Homodimer.
    Aupič J; Lapenta F; Jerala R
    Chembiochem; 2018 Dec; 19(23):2453-2457. PubMed ID: 30260542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding metalloprotein folding using a de novo design strategy.
    Ghosh D; Pecoraro VL
    Inorg Chem; 2004 Dec; 43(25):7902-15. PubMed ID: 15578824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy.
    Eisermann J; Seif-Eddine M; Roessler MM
    Curr Opin Chem Biol; 2021 Apr; 61():114-122. PubMed ID: 33422836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.
    am Ende CW; Meng HY; Ye M; Pandey AK; Zondlo NJ
    Chembiochem; 2010 Aug; 11(12):1738-47. PubMed ID: 20623571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-mediated peptide assembly: use of metal coordination to change the oligomerization state of an alpha-helical coiled-coil.
    Tsurkan MV; Ogawa MY
    Inorg Chem; 2007 Aug; 46(17):6849-51. PubMed ID: 17661463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Directed Design of Supramolecular Protein Assemblies.
    Bailey JB; Subramanian RH; Churchfield LA; Tezcan FA
    Methods Enzymol; 2016; 580():223-50. PubMed ID: 27586336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation.
    Binolfi A; Lamberto GR; Duran R; Quintanar L; Bertoncini CW; Souza JM; Cerveñansky C; Zweckstetter M; Griesinger C; Fernández CO
    J Am Chem Soc; 2008 Sep; 130(35):11801-12. PubMed ID: 18693689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of metal coordination number in de novo designed peptides through subtle sequence modifications.
    Lee KH; Matzapetakis M; Mitra S; Marsh EN; Pecoraro VL
    J Am Chem Soc; 2004 Aug; 126(30):9178-9. PubMed ID: 15281796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.