These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31205456)
1. Inflammation as a Cancer Co-Initiator: New Mechanistic Model Predicts Low/Negligible Risk at Noninflammatory Carcinogen Doses. Bogen KT Dose Response; 2019; 17(2):1559325819847834. PubMed ID: 31205456 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. Bogen KT Environ Res; 2023 Aug; 230():115047. PubMed ID: 36965808 [TBL] [Abstract][Full Text] [Related]
3. Comparison of experimental and theoretical parameters of the Moolgavkar-Venzon-Knudson incidence function for the stages of initiation and promotion in rat hepatocarcinogenesis. Dragan YP; Hully J; Baker K; Crow R; Mass MJ; Pitot HC Toxicology; 1995 Sep; 102(1-2):161-75. PubMed ID: 7482551 [TBL] [Abstract][Full Text] [Related]
4. Universality of J-shaped and U-shaped dose-response relations as emergent properties of stochastic transition systems. Cox LA Dose Response; 2006 May; 3(3):353-68. PubMed ID: 18648616 [TBL] [Abstract][Full Text] [Related]
5. Risk assessment of nongenotoxic carcinogens based upon cell proliferation/death rates in rodents. Gaylor DW; Zheng Q Risk Anal; 1996 Apr; 16(2):221-5. PubMed ID: 8638041 [TBL] [Abstract][Full Text] [Related]
6. Efficient tumorigenesis by mutation-induced failure to terminate microRNA-mediated adaptive hyperplasia. Bogen KT Med Hypotheses; 2013 Jan; 80(1):83-93. PubMed ID: 23183421 [TBL] [Abstract][Full Text] [Related]
7. Consideration of tissue response in the application of the two-mutation model to radiation carcinogenesis. Holt PD Int J Radiat Biol; 1997 Feb; 71(2):203-13. PubMed ID: 9120356 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Models Fit to ED001 Data on >40,000 Trout Exposed to Dibenzo[A,L]pyrene Indicate Mutations Do Not Drive Increased Tumor Risk. Bogen KT Dose Response; 2014 Jul; 12(3):386-403. PubMed ID: 25249832 [TBL] [Abstract][Full Text] [Related]
9. A mechanistic approach to modelling the risk of liver tumours in mice exposed to fumonisin B1 in the diet. Kodell RL; Young JF; Delongchamp RR; Turturro A; Chen JJ; Gaylor DW; Howard PC; Zheng Q Food Addit Contam; 2001 Mar; 18(3):237-53. PubMed ID: 11304033 [TBL] [Abstract][Full Text] [Related]
10. Modelling lymphocytic leukaemia incidence in England and Wales using generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon and Knudson. Little MP; Muirhead CR; Stiller CA Stat Med; 1996 May; 15(10):1003-22. PubMed ID: 8783438 [TBL] [Abstract][Full Text] [Related]
11. Environmental and chemical carcinogenesis. Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140 [TBL] [Abstract][Full Text] [Related]
12. An exact representation for the generating function for the Moolgavkar-Venzon-Knudson two-stage model of carcinogenesis with stochastic stem cell growth. Denes J; Krewski D Math Biosci; 1996 Jan; 131(2):185-204. PubMed ID: 8589544 [TBL] [Abstract][Full Text] [Related]
13. Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Little MP Biometrics; 1995 Dec; 51(4):1278-91. PubMed ID: 8589222 [TBL] [Abstract][Full Text] [Related]
14. Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. Burgio E; Piscitelli P; Colao A Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30127322 [TBL] [Abstract][Full Text] [Related]
15. Molecular biology, epidemiology, and the demise of the linear no-threshold (LNT) hypothesis. Pollycove M; Feinendegen LE C R Acad Sci III; 1999; 322(2-3):197-204. PubMed ID: 10196673 [TBL] [Abstract][Full Text] [Related]
16. Origin of the linearity no threshold (LNT) dose-response concept. Calabrese EJ Arch Toxicol; 2013 Sep; 87(9):1621-33. PubMed ID: 23887208 [TBL] [Abstract][Full Text] [Related]
17. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique. Bogen KT Risk Anal; 2016 Mar; 36(3):589-604. PubMed ID: 26249816 [TBL] [Abstract][Full Text] [Related]
18. Population risk and physiological rate parameters for colon cancer. The union of an explicit model for carcinogenesis with the public health records of the United States. Herrero-Jimenez P; Tomita-Mitchell A; Furth EE; Morgenthaler S; Thilly WG Mutat Res; 2000 Jan; 447(1):73-116. PubMed ID: 10686307 [TBL] [Abstract][Full Text] [Related]
19. Chloroform mode of action: implications for cancer risk assessment. Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278 [TBL] [Abstract][Full Text] [Related]
20. The importance of carcinogen dose in chemoprevention studies: quantitative interrelationships between, dibenzo[a,l]pyrene dose, chlorophyllin dose, target organ DNA adduct biomarkers and final tumor outcome. Pratt MM; Reddy AP; Hendricks JD; Pereira C; Kensler TW; Bailey GS Carcinogenesis; 2007 Mar; 28(3):611-24. PubMed ID: 16973675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]