These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31206245)

  • 1. Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases.
    This A; Boilevin-Kayl L; Fernández MA; Gerbeau JF
    Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3223. PubMed ID: 31206245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of heart valves using resistive Eulerian surfaces.
    Laadhari A; Quarteroni A
    Int J Numer Method Biomed Eng; 2016 May; 32(5):. PubMed ID: 26255787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust and efficient valve model based on resistive immersed surfaces.
    Astorino M; Hamers J; Shadden SC; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):937-59. PubMed ID: 22941924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based immersed boundary model of the aortic root.
    Hasan A; Kolahdouz EM; Enquobahrie A; Caranasos TG; Vavalle JP; Griffith BE
    Med Eng Phys; 2017 Sep; 47():72-84. PubMed ID: 28778565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of asymmetry on hemodynamics in fluid-structure interaction model of congenital bicuspid aortic valves.
    Marom G; Kim HS; Rosenfeld M; Raanani E; Haj-Ali R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():637-40. PubMed ID: 23365973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.
    Fedele M; Faggiano E; Dedè L; Quarteroni A
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1779-1803. PubMed ID: 28593469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model.
    Mao W; Caballero A; McKay R; Primiano C; Sun W
    PLoS One; 2017; 12(9):e0184729. PubMed ID: 28886196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-structure interaction modeling in cardiovascular medicine - A systematic review 2017-2019.
    Hirschhorn M; Tchantchaleishvili V; Stevens R; Rossano J; Throckmorton A
    Med Eng Phys; 2020 Apr; 78():1-13. PubMed ID: 32081559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed lumped parameter model of blood flow with fluid-structure interaction.
    Pewowaruk R; Roldán-Alzate A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1659-1674. PubMed ID: 34076757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
    Griffith BE
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics of blood flow in an idealized left human heart.
    Dedè L; Menghini F; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Nov; 37(11):e3287. PubMed ID: 31816195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of the hemodynamics after "edge-to-edge" mitral valve repair.
    Redaelli A; Guadagni G; Fumero R; Maisano F; Alfieri O
    J Biomech Eng; 2001 Dec; 123(6):565-70. PubMed ID: 11783727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.