These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31206245)

  • 21. Multiscale Coupling of One-dimensional Vascular Models and Elastic Tissues.
    Heltai L; Caiazzo A; Müller LO
    Ann Biomed Eng; 2021 Dec; 49(12):3243-3254. PubMed ID: 34282493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.
    Doost SN; Zhong L; Su B; Morsi YS
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):492-507. PubMed ID: 27796137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties.
    Long CC; Hsu MC; Bazilevs Y; Feinstein JA; Marsden AL
    Int J Numer Method Biomed Eng; 2012 May; 28(5):513-27. PubMed ID: 25099455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test.
    Sodhani D; Reese S; Aksenov A; Soğanci S; Jockenhövel S; Mela P; Stapleton SE
    J Biomech; 2018 Sep; 78():52-69. PubMed ID: 30086860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of fluid-structure interaction simulations of prosthetic heart valves.
    Borazjani I
    J Long Term Eff Med Implants; 2015; 25(1-2):75-93. PubMed ID: 25955008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-X Heart Valve Prosthesis: Numerical Simulation of Hemodynamic Performance in Accelerating Systole.
    Mirkhani N; Davoudi MR; Hanafizadeh P; Javidi D; Saffarian N
    Cardiovasc Eng Technol; 2016 Sep; 7(3):223-37. PubMed ID: 27164902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart.
    Bucelli M; Zingaro A; Africa PC; Fumagalli I; Dede' L; Quarteroni A
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3678. PubMed ID: 36579792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A coupled mitral valve-left ventricle model with fluid-structure interaction.
    Gao H; Feng L; Qi N; Berry C; Griffith BE; Luo X
    Med Eng Phys; 2017 Sep; 47():128-136. PubMed ID: 28751011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FSI simulation of intra-ventricular flow in patient-specific ventricular model with both mitral and aortic valves.
    Zhong L; Su B; Zhang JM; Leo HL; Tan RS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():703-6. PubMed ID: 24109784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Approach to Study the Behavior of an Artificial Ventricle: Fluid-Structure Interaction Followed By Fluid Dynamics With Moving Boundaries.
    Luraghi G; Wu W; De Castilla H; Rodriguez Matas JF; Dubini G; Dubuis P; Grimmé M; Migliavacca F
    Artif Organs; 2018 Oct; 42(10):E315-E324. PubMed ID: 30298937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis.
    Yeh HH; Barannyk O; Grecov D; Oshkai P
    Comput Biol Med; 2019 Jul; 110():79-92. PubMed ID: 31129417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
    Sigüenza J; Pott D; Mendez S; Sonntag SJ; Kaufmann TAS; Steinseifer U; Nicoud F
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2945. PubMed ID: 29181891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does clinical data quality affect fluid-structure interaction simulations of patient-specific stenotic aortic valve models?
    Luraghi G; Migliavacca F; Chiastra C; Rossi A; Reimers B; Stefanini GG; Rodriguez Matas JF
    J Biomech; 2019 Sep; 94():202-210. PubMed ID: 31421806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy vs. computational time: translating aortic simulations to the clinic.
    Brown AG; Shi Y; Marzo A; Staicu C; Valverde I; Beerbaum P; Lawford PV; Hose DR
    J Biomech; 2012 Feb; 45(3):516-23. PubMed ID: 22189248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.