BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 31206931)

  • 1. Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases.
    Sander L; Pezold S; Andermatt S; Amann M; Meier D; Wendebourg MJ; Sinnecker T; Radue EW; Naegelin Y; Granziera C; Kappos L; Wuerfel J; Cattin P; Schlaeger R;
    Hum Brain Mapp; 2019 Oct; 40(14):4091-4104. PubMed ID: 31206931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.
    Wang JY; Ngo MM; Hessl D; Hagerman RJ; Rivera SM
    PLoS One; 2016; 11(5):e0156123. PubMed ID: 27213683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential brainstem atrophy patterns in multiple sclerosis and neuromyelitis optica spectrum disorders.
    Lee CY; Mak HK; Chiu PW; Chang HC; Barkhof F; Chan KH
    J Magn Reson Imaging; 2018 Jun; 47(6):1601-1609. PubMed ID: 28990252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy.
    Nigro S; Filardi M; Tafuri B; Nicolardi M; De Blasi R; Giugno A; Gnoni V; Milella G; Urso D; Zoccolella S; Logroscino G; ; ;
    Radiol Artif Intell; 2024 May; 6(3):e230151. PubMed ID: 38506619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
    Novosad P; Fonov V; Collins DL;
    Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis.
    Brusini I; Platten M; Ouellette R; Piehl F; Wang C; Granberg T
    J Neuroimaging; 2022 May; 32(3):459-470. PubMed ID: 35083815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated brainstem volumetry can aid in the diagnostics of parkinsonian disorders.
    Sjöström H; Granberg T; Hashim F; Westman E; Svenningsson P
    Parkinsonism Relat Disord; 2020 Oct; 79():18-25. PubMed ID: 32858488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gray matter segmentation of the spinal cord with active contours in MR images.
    Datta E; Papinutto N; Schlaeger R; Zhu A; Carballido-Gamio J; Henry RG
    Neuroimage; 2017 Feb; 147():788-799. PubMed ID: 27495383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects.
    Weeda MM; Middelkoop SM; Steenwijk MD; Daams M; Amiri H; Brouwer I; Killestein J; Uitdehaag BMJ; Dekker I; Lukas C; Bellenberg B; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():101962. PubMed ID: 31416017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies.
    Sander L; Horvath A; Pezold S; Andermatt S; Amann M; Sinnecker T; Wendebourg MJ; Kesenheimer E; Yaldizli Ö; Kappos L; Granziera C; Wuerfel J; Cattin P; Schlaeger R
    Front Neurosci; 2020; 14():609422. PubMed ID: 33424541
    [No Abstract]   [Full Text] [Related]  

  • 12. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations.
    Jovicich J; Marizzoni M; Sala-Llonch R; Bosch B; Bartrés-Faz D; Arnold J; Benninghoff J; Wiltfang J; Roccatagliata L; Nobili F; Hensch T; Tränkner A; Schönknecht P; Leroy M; Lopes R; Bordet R; Chanoine V; Ranjeva JP; Didic M; Gros-Dagnac H; Payoux P; Zoccatelli G; Alessandrini F; Beltramello A; Bargalló N; Blin O; Frisoni GB;
    Neuroimage; 2013 Dec; 83():472-84. PubMed ID: 23668971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fully Automatic Method to Segment Choroid Plexuses in Multiple Sclerosis Using Conventional MRI Sequences.
    Storelli L; Pagani E; Rubin M; Margoni M; Filippi M; Rocca MA
    J Magn Reson Imaging; 2024 May; 59(5):1643-1652. PubMed ID: 37530734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
    Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM
    AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated hippocampal segmentation in patients with epilepsy: available free online.
    Winston GP; Cardoso MJ; Williams EJ; Burdett JL; Bartlett PA; Espak M; Behr C; Duncan JS; Ourselin S
    Epilepsia; 2013 Dec; 54(12):2166-73. PubMed ID: 24151901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.
    Mulder ER; de Jong RA; Knol DL; van Schijndel RA; Cover KS; Visser PJ; Barkhof F; Vrenken H;
    Neuroimage; 2014 May; 92():169-81. PubMed ID: 24521851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian segmentation of brainstem structures in MRI.
    Iglesias JE; Van Leemput K; Bhatt P; Casillas C; Dutt S; Schuff N; Truran-Sacrey D; Boxer A; Fischl B;
    Neuroimage; 2015 Jun; 113():184-95. PubMed ID: 25776214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Segmentation Algorithm for Hematoma Volumetric Analysis in Spontaneous Intracerebral Hemorrhage.
    Ironside N; Chen CJ; Mutasa S; Sim JL; Marfatia S; Roh D; Ding D; Mayer SA; Lignelli A; Connolly ES
    Stroke; 2019 Dec; 50(12):3416-3423. PubMed ID: 31735138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.