These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3120697)

  • 1. Characterization of an NADH-dependent haem-degrading system in ox heart mitochondria.
    Kutty RK; Maines MD
    Biochem J; 1987 Sep; 246(2):467-74. PubMed ID: 3120697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride.
    Hino Y; Minakami S
    Biochem J; 1979 Feb; 178(2):323-9. PubMed ID: 36076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic conversion of alpha-oxyprotohaem IX into biliverdin IX alpha by haem oxygenase.
    Yoshinaga T; Sudo Y; Sano S
    Biochem J; 1990 Sep; 270(3):659-64. PubMed ID: 2122884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalysis of heme degradation by purified NADPH-cytochrome C reductase in the absence of other microsomal proteins.
    Masters BS; Schacter BA
    Ann Clin Res; 1976; 8 Suppl 17():18-27. PubMed ID: 827231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol.
    Takayanagi R; Takeshige K; Minakami S
    Biochem J; 1980 Dec; 192(3):853-60. PubMed ID: 7236242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methene bridge carbon atom elimination in oxidative heme degradation catalyzed by heme oxygenase and NADPH-cytochrome P-450 reductase.
    Docherty JC; Firneisz GD; Schacter BA
    Arch Biochem Biophys; 1984 Dec; 235(2):657-64. PubMed ID: 6440489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The markers of pig heart mitochondrial sub-fractions : I. - The dual location of NADPH-cytochrome c reductase in outer membrane and microsomes.
    Comte J; Gautheron DC
    Biochimie; 1978; 60(11-12):1289-98. PubMed ID: 223663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological arrangement in microsomal membranes of hepatic haem oxygenase induced by cobalt chloride.
    Hino Y; Asagami H; Minakami S
    Biochem J; 1979 Feb; 178(2):331-7. PubMed ID: 444218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heme.
    Schaefer WH; Harris TM; Guengerich FP
    Biochemistry; 1985 Jun; 24(13):3254-63. PubMed ID: 3927975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation.
    Narabayashi H; Takeshige K; Minakami S
    Biochem J; 1982 Jan; 202(1):97-105. PubMed ID: 7082319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles.
    Hasegawa E; Takeshige K; Oishi T; Murai Y; Minakami S
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1049-55. PubMed ID: 2167668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme catabolism by the reconstituted heme oxygenase system.
    Kikuchi G; Yoshida T
    Ann Clin Res; 1976; 8 Suppl 17():10-7. PubMed ID: 827230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of oxygen in oxyhaemoproteins and its implications for haem catabolism.
    Brown SB; Chabot AA; Enderby EA; North AC
    Nature; 1981 Jan; 289(5793):93-5. PubMed ID: 7453813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro. Involvement of non-carbon monoxide-forming mechanisms.
    Guzelian PS; Swisher RW
    Biochem J; 1979 Dec; 184(3):481-9. PubMed ID: 120199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramitochondrial positions of cytochrome haem groups determined by dipolar interactions with paramagnetic cations.
    Case GD; Leigh JS
    Biochem J; 1976 Dec; 160(3):769-83. PubMed ID: 189758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical studies of haem oxygenase. Preparation and characterization of antibodies to chick liver haem oxygenase and their use in detecting and quantifying amounts of haem oxygenase protein.
    Greene YJ; Healey JF; Bonkovsky HL
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):849-54. PubMed ID: 1953681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.